Друга теорема Веєрштрасса
Дру́га теоре́ма Веєрштрасса доводить досягнення неперервною функцією своїх точних меж. Вперше сформулював і довів німецький математик Карл Веєрштрасс.
Якщо функція неперервна на проміжку , то вона досягає на цьому проміжку своїх точних верхньої та нижньої меж. (тобто на проміжку знайдуться точки та такі, що , .
Доведемо, що функція неперервна на проміжку досягає своєї точної верхньої межі (досягнення точної нижньої межі доводиться аналогічно).
Припустимо супротивне, тобто припустимо, що функція не приймає значення точної верхньої межі у будь-якій точці проміжку . Тоді для всіх точок проміжку нерівність є правильною, і ми можемо розглянути на проміжку скрізь додатну функцію
.
Оскільки знаменник не обертається в нуль та неперервний на проміжку , то за теоремою про неперервність частки неперервних функцій, функція також неперервна на проміжку . У цьому разі, згідно з першою теоремою Веєрштрасса, функція обмежена на проміжку , тобто знайдеться таке додатне число , що для будь-якого з проміжку справедлива нерівність:
.
Її можна переписати (враховуючи що ) у такому вигляді:
.
Це співвідношення правильне для будь-яких точок з проміжку . Воно суперечить тому, що є точною верхньою межею (найменшою з усіх верхніх меж) функції на проміжку . Отже, отримана суперечність доводить хибність нашого припущення.
Теорему доведено.
- Перша теорема Веєрштрасса
- Неперервна функція
- Карл Веєрштрас
- Теореми Веєрштраса у банахових просторах
- Теорема Веєрштрасса — Стоуна
- Григорій Михайлович Фіхтенгольц. Курс диференціального та інтегрального числення. — 2024. — 2403 с.(укр.)
- Дороговцев А. Я. Математичний аналіз. Частина 1. — К. : Либідь, 1993. — 320 с. — ISBN 5-325-00380-1.(укр.)
- Завало С. Т. (1972). Елементи аналізу. Алгебра многочленів. Київ: Радянська школа. с. 462. (укр.)