Випромінювання чорного тіла
Частина циклу статей про |
Випромінювання чорного тіла |
---|
Поняття: абсолютно чорне тіло теплове випромінювання закон Кірхгофа |
Основні формули: Планка зміщення Віна Стефана — Больцмана |
Історичні закони: наближення Віна[en] закон Релея — Джинса ультрафіолетова катастрофа гіпотеза Планка |
Випромінювання чорного тіла — теплове електромагнітне випромінювання всередині або навколо тіла, що перебуває в термодинамічній рівновазі з навколишнім середовищем, яке випромінює чорне тіло (ідеалізоване непрозоре тіло, що не відбиває світло). Має певний безперервний спектр довжин хвиль, обернено пов’язаний з інтенсивністю, який залежить лише від температури тіла, яка для розрахунків і теорії вважається однорідною та постійною[1][2][3][4].
Ідеально ізольований корпус, який перебуває в тепловій рівновазі, містить випромінювання абсолютно чорного тіла і випромінює його через отвір, зроблений у його стінці, за умови, що отвір досить малий, щоб мати незначний вплив на рівновагу.
Теплове випромінювання, що спонтанно випромінюється багатьма звичайними об'єктами, можна наближено вважати випромінюванням чорного тіла.
Особливо важливо, хоча планети та зірки (включаючи Землю та Сонце) не перебувають ні в тепловій рівновазі з навколишнім середовищем, ні ідеально чорними тілами, випромінювання чорного тіла все ще є хорошим першим наближенням для енергії, яку вони випромінюють. Таким чином, сонячне випромінювання, яке фільтрується земною атмосферою, характеризує «денне світло», яке люди (також більшість інших тварин) еволюціонували для використання для зору[5].
Чорне тіло при кімнатній температурі (23 °C (296 К; 73 °F)) випромінює переважно в інфрачервоному спектрі, який не сприймається людським оком[6], але може відчуватися деякими рептиліями. Коли температура об’єкта зростає приблизно до 500 °C (773 К; 932 °F), спектр випромінювання стає сильнішим і поширюється на область зору людини, а об’єкт виглядає тьмяно-червоним. У міру подальшого підвищення температури він випромінює все більше помаранчевого, жовтого, зеленого та синього світла (і, зрештою, понад фіолетове, ультрафіолетове).
Лампи з вольфрамовою ниткою мають безперервний спектр чорного тіла з холоднішою колірною температурою, близько 2 700 К (2 430 °C; 4 400 °F), який також випромінює значну енергію в інфрачервоному діапазоні. Сучасні люмінесцентні та світлодіодні лампи, які є більш ефективними, не мають безперервного спектру випромінювання чорного тіла, а випромінюють безпосередньо або використовують комбінації люмінофорів, які випромінюють кілька вузьких спектрів.
Чорні діри є майже ідеальними чорними тілами в тому сенсі, що вони поглинають усе випромінювання, яке на них падає. Було припущено, що вони випромінюють випромінювання чорного тіла (так зване випромінювання Хокінга) з температурою, яка залежить від маси чорної діри[7].
Термін чорне тіло був введений Густавом Кірхгофом у 1860 році[8]. Випромінювання чорного тіла також називають тепловим випромінюванням, випромінюванням порожнини, повним випромінюванням або температурним випромінюванням.
Випромінювання чорного тіла має характерний безперервний частотний спектр, який залежить лише від температури тіла[12] і називається спектром Планка або законом Планка. Спектр має пік на характерній частоті, яка зміщується до вищих частот із підвищенням температури, а при кімнатній температурі більша частина випромінювання припадає на інфрачервону область електромагнітного спектру[13][14][15]. Коли температура підвищується понад 500 градусів за Цельсієм, чорні тіла починають випромінювати значну кількість видимого світла. Коли людське око дивиться в темряві, перше слабке світіння виглядає як «примарний» сірий колір (видиме світло насправді червоне, але світло низької інтенсивності активує лише датчики рівня сірого ока). З підвищенням температури світіння стає видимим, навіть якщо є фонове освітлення: спочатку у вигляді тьмяно-червоного, потім жовтого і, зрештою, «сліпучо-блакитно-білого», коли температура підвищується[16][17]. Коли тіло виглядає білим, воно випромінює значну частину своєї енергії у вигляді ультрафіолетового випромінювання. Сонце з ефективною температурою приблизно 5800 К[18] є приблизно чорним тілом із піком спектра випромінювання в центральній, жовто-зеленій частині видимого спектра, але також із значною потужністю в ультрафіолеті.
- ↑ Loudon, 2000, Chapter 1.
- ↑ Mandel та Wolf, 1995, Chapter 13.
- ↑ Kondepudi та Prigogine, 1998, Chapter 11.
- ↑ Landsberg, 1990, Chapter 13.
- ↑ Ian Morison (2008). Introduction to Astronomy and Cosmology. J Wiley & Sons. с. 48. ISBN 978-0-470-03333-3.
- ↑ Partington, J.R. (1949), p. 466.
- ↑ Alessandro Fabbri; José Navarro-Salas (2005). Chapter 1: Introduction. Modeling black hole evaporation. Imperial College Press. ISBN 1-86094-527-9.
- ↑ From (Kirchhoff, 1860) (Annalen der Physik und Chemie), p. 277: "Der Beweis, welcher für die ausgesprochene Behauptung hier gegeben werden soll, … vollkommen schwarze, oder kürzer schwarze, nennen." (The proof, which shall be given here for the proposition stated [above], rests on the assumption that bodies are conceivable which in the case of infinitely small thicknesses, completely absorb all rays that fall on them, thus [they] neither reflect nor transmit rays. I will call such bodies "completely black [bodies]" or more briefly "black [bodies]".) See also (Kirchhoff, 1860) (Philosophical Magazine), p. 2.
- ↑ Gannon, Megan (21 грудня 2012). New 'Baby Picture' of Universe Unveiled. Space.com. Процитовано 21 грудня 2012.
- ↑ Bennett, C.L.; Larson, L.; Weiland, J.L.; Jarosk, N.; Hinshaw, N.; Odegard, N.; Smith, K.M.; Hill, R.S.; Gold, B. (20 грудня 2012). Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results. The Astrophysical Journal Supplement Series. 1212 (2): 5225. arXiv:1212.5225. Bibcode:2013ApJS..208...20B. doi:10.1088/0067-0049/208/2/20.
- ↑ Dustin. How Do Blacksmiths Measure The Temperature Of Their Forge And Steel?. Blacksmith U.
- ↑ Tomokazu Kogure; Kam-Ching Leung (2007). §2.3: Thermodynamic equilibrium and blackbody radiation. The astrophysics of emission-line stars. Springer. с. 41. ISBN 978-0-387-34500-0.
- ↑ Wien, W. (1893). Eine neue Beziehung der Strahlung schwarzer Körper zum zweiten Hauptsatz der Wärmetheorie, Sitzungberichte der Königlich-Preußischen Akademie der Wissenschaften (Berlin), 1893, 1: 55–62.
- ↑ Lummer, O., Pringsheim, E. (1899). Die Vertheilung der Energie im Spectrum des schwarzen Körpers, Verhandlungen der Deutschen Physikalischen Gessellschaft (Leipzig), 1899, 1: 23–41.
- ↑ Planck, 1914
- ↑ Draper, J.W. (1847). On the production of light by heat, London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, series 3, 30: 345–360.
- ↑ Partington, 1949.
- ↑ Goody та Yung, 1989
- Chandrasekhar, S. (1950). Radiative Transfer. Oxford University Press.
- Goody, R. M.; Yung, Y. L. (1989). Atmospheric Radiation: Theoretical Basis (вид. 2nd). Oxford University Press. ISBN 978-0-19-510291-8.
- Hermann, A. (1971). The Genesis of Quantum Theory. Nash, C.W. (transl.). MIT Press. ISBN 0-262-08047-8. a translation of Frühgeschichte der Quantentheorie (1899–1913), Physik Verlag, Mosbach/Baden.
- Kirchhoff, G.; [27 October 1859] (1860a). Über die Fraunhofer'schen Linien [On Fraunhofer's lines]. Monatsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin: 662—665.
- Kirchhoff, G.; [11 December 1859] (1860b). Über den Zusammenhang zwischen Emission und Absorption von Licht und Wärme [On the relation between emission and absorption of light and heat]. Monatsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin: 783—787.
- Kirchhoff, G. (1860c). Ueber das Verhältniss zwischen dem Emissionsvermögen und dem Absorptionsvermögen der Körper für Wärme and Licht [On the relation between bodies' emission capacity and absorption capacity for heat and light]. Annalen der Physik und Chemie. 109 (2): 275—301. Bibcode:1860AnP...185..275K. doi:10.1002/andp.18601850205. Translated by Guthrie, F. as Kirchhoff, G. (1860). On the relation between the radiating and absorbing powers of different bodies for light and heat. Philosophical Magazine. Series 4, volume 20: 1—21.
- Kirchhoff, G. (1882) [1862], Ueber das Verhältniss zwischen dem Emissionsvermögen und dem Absorptionsvermögen der Körper für Wärme und Licht, Gessamelte Abhandlungen, Leipzig: Johann Ambrosius Barth, с. 571—598
- Kondepudi, D.; Prigogine, I. (1998). Modern Thermodynamics. From Heat Engines to Dissipative Structures. John Wiley & Sons. ISBN 0-471-97393-9.
- Kragh, H. (1999). Quantum Generations: a History of Physics in the Twentieth Century. Princeton University Press. ISBN 0-691-01206-7.
- Kuhn, T. S. (1978). Black–Body Theory and the Quantum Discontinuity. Oxford University Press. ISBN 0-19-502383-8.
- Landsberg, P. T. (1990). Thermodynamics and statistical mechanics (вид. Reprint). Courier Dover Publications. ISBN 0-486-66493-7.
- Lavenda, Bernard Howard (1991). Statistical Physics: A Probabilistic Approach. John Wiley & Sons. с. 41–42. ISBN 978-0-471-54607-8.
- Loudon, R. (2000) [1973]. The Quantum Theory of Light (вид. third). Cambridge University Press. ISBN 0-19-850177-3.
- Mandel, L.; Wolf, E. (1995). Optical Coherence and Quantum Optics. Cambridge University Press. ISBN 0-521-41711-2.
- Mehra, J.; Rechenberg, H. (1982). The Historical Development of Quantum Theory. Т. 1, part 1. Springer-Verlag. ISBN 0-387-90642-8.
- Mihalas, D.; Weibel-Mihalas, B. (1984). Foundations of Radiation Hydrodynamics. Oxford University Press. ISBN 0-19-503437-6.
- Milne, E.A. (1930). Thermodynamics of the Stars. Handbuch der Astrophysik. 3, part 1: 63—255.
- Müller-Kirsten, Harald J.W. (2013). Basics of Statistical Physics (вид. 2nd). World Scientific. ISBN 978-981-4449-53-3.
- Partington, J.R. (1949). An Advanced Treatise on Physical Chemistry. Volume 1. Fundamental Principles. The Properties of Gases. Longmans, Green and Co.
- Planck, M. (1914) [1912]. The Theory of Heat Radiation. translated by Masius, M. P. Blakiston's Sons & Co.
- Rybicki, G. B.; Lightman, A. P. (1979). Radiative Processes in Astrophysics. John Wiley & Sons. ISBN 0-471-82759-2.
- Schirrmacher, A. (2001). Experimenting theory: the proofs of Kirchhoff's radiation law before and after Planck. Münchner Zentrum für Wissenschafts und Technikgeschichte.
- Siegel, D.M. (1976). Balfour Stewart and Gustav Robert Kirchhoff: two independent approaches to "Kirchhoff's radiation law". Isis. 67 (4): 565—600. doi:10.1086/351669. PMID 794025. S2CID 37368520.
- Stewart, B. (1858). An account of some experiments on radiant heat. Transactions of the Royal Society of Edinburgh. 22: 1—20. doi:10.1017/S0080456800031288. S2CID 122316368.
- Wien, W. (1894). Temperatur und Entropie der Strahlung [Temperature and entropy of radiation]. Annalen der Physik. 288 (5): 132—165. Bibcode:1894AnP...288..132W. doi:10.1002/andp.18942880511.
- Kroemer, Herbert; Kittel, Charles (1980). Thermal Physics (вид. 2nd). W. H. Freeman Company. ISBN 0-7167-1088-9.
- Tipler, Paul; Llewellyn, Ralph (2002). Modern Physics (вид. 4th). W. H. Freeman. ISBN 0-7167-4345-0.
- Випромінювання абсолютно чорного тіла на YouTube, канал НДІ астрономії ХНУ
- Випромінювання чорного тіла JavaScript Interactives Випромінювання чорного тіла від Fu-Kwun Hwang та Loo Kang Wee
- Розрахунок випромінювання чорного тіла Інтерактивний калькулятор з ефектом Доплера. Включає більшість систем одиниць.
- Демонстрація кольору до температури на Academo.org
- Механізми охолодження людського тіла – з гіперфізики
- Описи випромінювання, що випускається багатьма різними об'єктами
- Аплет Blackbody Emission Archived </link>
- «Спектр чорного тіла» Джеффа Брайанта, демонстраційний проект Wolfram, 2007.