Гамільтонів граф
Га́мільтонів гра́ф — в математиці це граф, що містить гамільтонів цикл.
Га́мільтонів шля́х — шлях, що містить кожну вершину графу рівно один раз. Гамільтонів шлях, початкова і кінцева вершини якого збігаються, називається гамільтоновим циклом.
Гамільтонові шлях, цикл і граф названі на честь ірландського математика Вільяма Гамільтона, який вперше визначив ці класи, дослідивши задачу «навколосвітньої подорожі» по додекаедру, вузлові вершини якого символізували найбільші міста Землі, а ребра — дороги, що їх з'єднують.
Хоч вони й названі на честь Гамільтона, гамільтонові цикли в многогранниках раніше вивчав Томас Кіркман[en], який, зокрема, навів приклад многогранника без гамільтонових циклів.[1] Ще раніше гамільтонові цикли і шляхи в графі ходів коня на шахівниці, маршрути коня, вивчав індійський математик IX століття Рудрата[en], і приблизно в той самий час арабський математик аль-Адлі[en]. У XVIII столітті в Європі маршрут коня публікували Абрахам де Муавр і Леонард Ейлер.[2]
Задачу знаходження гамільтонового циклу можна використати як основу для доведення з нульовим пізнанням.
Нехай — число вершин в даному графі; якщо степінь кожної вершини не менший, ніж , то граф називається графом Дірака. Граф Дірака — гамільтонів.
— число вершин у даному графі. Якщо для будь-якої пари несуміжних вершин , виконано нерівність то граф називаваєтся графом Оре (словами: сума степенів будь-яких двох несуміжних вершин не менша від загального числа вершин у графі). Граф Оре — гамільтонів.
Теорема Бонді — Хватала узагальнює твердження Дірака і Оре. Спочатку визначимо замикання графу. Нехай у графу є вершин. Тоді замикання однозначно будується за G додаванням для всіх несуміжних вершин і , у яких виконується , нового ребра .
Граф є гамільтоновим тоді і тільки тоді, коли його замикання — гамільтонів граф.
- Будь-який повний граф є гамільтоновим.
- Усі цикли є гамільтоновими графами.
- Усі правильні многогранники є гамільтоновими графами.
- Гамільтонів розклад
- Гамільтонове доповнення
- Гіпотеза Ловаса про гамільтонів цикл
- Граф ходів коня
- Ікосіан
- Панциклічний граф
- Платонів граф
- ↑ Biggs, N. L. (1981), T. P. Kirkman, mathematician, The Bulletin of the London Mathematical Society, 13 (2): 97—120, doi:10.1112/blms/13.2.97, MR 0608093.
- ↑ Watkins, John J. (2004), Chapter 2: Knight's Tours, Across the Board: The Mathematics of Chessboard Problems, Princeton University Press, с. 25—38, ISBN 978-0-691-15498-5.
- Bollobás, B. Graph Theory: An Introductory Course. New York: Springer-Verlag, 1979.
- Chartrand, G. Introductory Graph Theory. New York: Dover, 1985.
- The Hamiltonian Page. web.archive.org. 31 січня 1998. Процитовано 23 червня 2022. — задачі про гамільтонові шляхи і цикли]