Матеріал з Вікіпедії — вільної енциклопедії.
Дополнение к статье «Bolzano-Weierstrass theorem»
t
⊢
f
:
N
↦
R
∧
∃
{
a
,
b
}
⊆
R
∧
a
≤
b
∀
n
∈
N
(
a
≤
f
n
≤
b
)
→
{\displaystyle ~t\vdash \quad \mathrm {f} :\mathbb {N} \mapsto \mathbb {R} \quad \land \quad \exists _{\{a,b\}\ \subseteq \ \mathbb {R} \ \land \ a\ \leq \ b}\ \forall _{n\ \in \ \mathbb {N} }\ (a\leq f_{n}\leq b)\quad \to }
∃
g
:
N
↦
R
(
∀
m
∈
N
∃
n
∈
N
{
1
}
(
g
m
=
f
n
)
∧
∀
n
∈
N
∃
m
∈
N
{
0
,
1
}
(
g
m
=
f
n
)
∧
(
lim
m
→
∞
g
m
)
∈
R
)
{\displaystyle ~\exists _{\mathrm {g} :\ \mathbb {N} \ \mapsto \ \mathbb {R} }\ (\forall _{m\ \in \ \mathbb {N} }\ \exists _{n\ \in \ \mathbb {N} }^{\{1\}}\ (g_{m}=f_{n})\quad \land \quad \forall _{n\ \in \ \mathbb {N} }\ \exists _{m\ \in \ \mathbb {N} }^{\{0,1\}}\ (g_{m}=f_{n})\quad \land \quad (\lim _{m\to \infty }g_{m})\in \mathbb {R} )}
Примечание
f
:
N
↦
R
{\displaystyle ~\mathrm {f} :\mathbb {N} \mapsto \mathbb {R} }
- последовательность вещественных чисел, то есть вещественная функция натурального аргумента.
f
:
N
↦
R
⇔
f
=
{
⟨
n
,
f
n
⟩
|
⟨
n
,
f
n
⟩
∈
N
×
R
∧
f
n
=
f
(
n
)
}
{\displaystyle ~\mathrm {f} :\mathbb {N} \mapsto \mathbb {R} \ \Leftrightarrow \ \mathrm {f} =\{\langle n,f_{n}\rangle |\quad \langle n,f_{n}\rangle \in \mathbb {N} \times \mathbb {R} \quad \land \ \quad f_{n}=f(n)\}}
f
:
N
↦
R
⇔
f
⊆
N
×
R
∧
f
≠
∅
∧
∀
n
∈
N
∃
x
∈
R
{
1
}
(
⟨
n
,
x
⟩
∈
f
)
{\displaystyle ~\mathrm {f} :\mathbb {N} \mapsto \mathbb {R} \ \Leftrightarrow \ \mathrm {f} \subseteq \mathbb {N} \times \mathbb {R} \quad \land \quad \mathrm {f} \neq \varnothing \quad \land \quad \forall _{n\ \in \ \mathbb {N} }\ \exists _{x\ \in \ \mathbb {R} }^{\{1\}}\ (\langle n,x\rangle \in \mathrm {f} )}
f
⊆
N
×
R
⇔
∀
n
∀
x
(
⟨
n
,
x
⟩
∈
f
→
⟨
n
,
x
⟩
∈
N
×
R
)
{\displaystyle ~\mathrm {f} \subseteq \mathbb {N} \times \mathbb {R} \ \Leftrightarrow \ \forall n\forall x\ (\langle n,x\rangle \in \mathrm {f} \ \to \ \langle n,x\rangle \in \mathbb {N} \times \mathbb {R} )}
f
⊆
N
×
R
⇔
f
∈
P
(
N
×
R
)
{\displaystyle ~\mathrm {f} \subseteq \mathbb {N} \times \mathbb {R} \ \Leftrightarrow \ \mathrm {f} \in {\mathcal {P}}(\mathbb {N} \times \mathbb {R} )}
P
(
N
×
R
)
{\displaystyle ~{\mathcal {P}}(\mathbb {N} \times \mathbb {R} )}
- булеан (= множество всех подмножеств) декартового произведения
N
×
R
{\displaystyle ~\mathbb {N} \times \mathbb {R} }
∀
n
∈
N
∃
x
∈
R
{
1
}
(
⟨
n
,
x
⟩
∈
f
)
⇔
∀
n
(
n
∈
N
→
∃
{
1
}
x
(
x
∈
R
∧
⟨
n
,
x
⟩
∈
f
)
{\displaystyle ~\forall _{n\ \in \ \mathbb {N} }\ \exists _{x\ \in \ \mathbb {R} }^{\{1\}}(\langle n,x\rangle \in \mathrm {f} )\ \Leftrightarrow \ \forall n\ (n\in \mathbb {N} \to \exists ^{\{1\}}x\ (x\in \mathbb {R} \ \land \ \langle n,x\rangle \in \mathrm {f} )}
∃
{
1
}
x
(
x
∈
R
∧
⟨
n
,
x
⟩
∈
f
)
⇔
∃
x
∈
R
{
1
,
.
.
.
}
(
⟨
n
,
x
⟩
∈
f
)
∧
∃
x
∈
R
{
0
,
1
}
(
⟨
n
,
x
⟩
∈
f
)
{\displaystyle ~\exists ^{\{1\}}x\ (x\in \mathbb {R} \ \land \ \langle n,x\rangle \in \mathrm {f} )\ \Leftrightarrow \ \exists _{x\ \in \ \mathbb {R} }^{\{1,...\}}\ (\langle n,x\rangle \in \mathrm {f} )\quad \land \quad \exists _{x\ \in \ \mathbb {R} }^{\{0,1\}}\ (\langle n,x\rangle \in \mathrm {f} )}
∃
x
∈
R
{
1
,
.
.
.
}
(
⟨
n
,
x
⟩
∈
f
)
⇔
∃
x
∈
R
(
⟨
n
,
x
⟩
∈
f
)
⇔
∃
x
(
x
∈
R
∧
⟨
n
,
x
⟩
∈
f
)
{\displaystyle ~\exists _{x\ \in \ \mathbb {R} }^{\{1,...\}}\ (\langle n,x\rangle \in \mathrm {f} )\ \Leftrightarrow \ \exists _{x\ \in \ \mathbb {R} }\ (\langle n,x\rangle \in \mathrm {f} )\ \Leftrightarrow \ \exists x\ (x\in \mathbb {R} \ \land \ \langle n,x\rangle \in \mathrm {f} )}
∃
x
∈
R
{
0
,
1
}
(
⟨
n
,
x
⟩
∈
f
)
⇔
∀
x
1
∀
x
2
(
{
x
1
,
x
2
}
⊆
R
∧
{
⟨
n
,
x
1
⟩
,
⟨
n
,
x
2
⟩
}
⊆
f
→
x
1
=
x
2
)
{\displaystyle ~\exists _{x\ \in \ \mathbb {R} }^{\{0,1\}}\ (\langle n,x\rangle \in \mathrm {f} )\ \Leftrightarrow \ \forall x_{1}\forall x_{2}\ (\{x_{1},x_{2}\}\subseteq \mathbb {R} \ \ \land \ \ \{\langle n,x_{1}\rangle ,\ \langle n,x_{2}\rangle \}\subseteq \mathrm {f} \to x_{1}=x_{2})}
{
x
1
,
x
2
}
⊆
R
⇔
x
1
∈
R
∧
x
2
∈
R
{\displaystyle ~\{x_{1},x_{2}\}\subseteq \mathbb {R} \ \Leftrightarrow \ x_{1}\in \mathbb {R} \ \land \ x_{2}\in \mathbb {R} }
{
⟨
n
,
x
1
⟩
,
⟨
n
,
x
2
⟩
}
⊆
f
⇔
⟨
n
,
x
1
⟩
∈
f
∧
⟨
n
,
x
2
⟩
∈
f
{\displaystyle ~\{\langle n,x_{1}\rangle ,\ \langle n,x_{2}\rangle \}\subseteq \mathrm {f} \ \Leftrightarrow \ \langle n,x_{1}\rangle \in \mathrm {f} \ \land \ \langle n,x_{2}\rangle \in \mathrm {f} }
∃
{
a
,
b
}
⊆
R
∧
a
≤
b
∀
n
∈
N
(
a
≤
f
n
≤
b
)
{\displaystyle ~\exists _{\{a,b\}\ \subseteq \ \mathbb {R} \ \land \ a\ \leq \ b}\ \forall _{n\ \in \ \mathbb {N} }\ (a\leq f_{n}\leq b)}
- "якiсть" (an attribute or a property) последовательности
f
:
N
↦
R
{\displaystyle ~\mathrm {f} :\mathbb {N} \mapsto \mathbb {R} }
.
f
:
N
↦
R
∧
∃
{
a
,
b
}
⊆
R
∧
a
≤
b
∀
n
∈
N
(
a
≤
f
n
≤
b
)
{\displaystyle ~\mathrm {f} :\mathbb {N} \mapsto \mathbb {R} \ \land \ \exists _{\{a,b\}\ \subseteq \ \mathbb {R} \ \land \ a\ \leq \ b}\ \forall _{n\ \in \ \mathbb {N} }\ (a\leq f_{n}\leq b)}
- последовательность вещественных чисел ограничена снизу и сверху.
∃
{
a
,
b
}
⊆
R
∧
a
≤
b
∀
n
∈
N
(
a
≤
f
n
≤
b
)
⇔
∃
a
∃
b
(
{
a
,
b
}
⊆
R
∧
a
≤
b
∧
∀
n
(
n
∈
N
→
a
≤
f
n
≤
b
)
)
{\displaystyle ~\exists _{\{a,b\}\ \subseteq \ \mathbb {R} \ \land \ a\ \leq \ b}\ \forall _{n\ \in \ \mathbb {N} }\ (a\leq f_{n}\leq b)\ \Leftrightarrow \ \exists a\exists b\ (\{a,b\}\subseteq \mathbb {R} \ \land \ a\leq b\ \land \ \forall n\ (n\in \mathbb {N} \to a\leq f_{n}\leq b))}
{
a
,
b
}
⊆
R
⇔
a
∈
R
∧
b
∈
R
{\displaystyle ~\{a,b\}\subseteq \mathbb {R} \ \Leftrightarrow \ a\in \mathbb {R} \ \land \ b\in \mathbb {R} }
a
≤
f
n
≤
b
⇔
a
≤
f
n
∧
f
n
≤
b
{\displaystyle ~a\leq f_{n}\leq b\ \Leftrightarrow \ a\leq f_{n}\ \land \ f_{n}\leq b}
Галактион 01:00, 20 серпня 2009 (UTC) Відповісти