Таблиця дільників для ґаусових чисел
Зовнішній вигляд
Кажуть, що ґаусове число ділиться на ненульове ґаусове число , якщо існує таке ґаусове число , для якого .
Відношення подільності позначається таким чином: .
При цьому число називають дільником числа .
Ґаусове число називають простим, якщо воно не є дільником одиниці і має рівно 8 дільників: .[1]
Ця стаття містить таблицю, в якій наведено кількість, суму 4-тих степенів та добуток усіх дільників для ґаусових чисел з нормою, що не перевищує 1000.
- – це кількість дільників ненульового ґаусового числа ;
- – це сума 4-тих степенів усіх дільників ненульового ґаусового числа ;
- – це добуток усіх дільників ненульового ґаусового числа .
- Оскільки у асоційованих ґаусових чисел множини дільників є рівними, то в таблиці будуть вказані лише ґаусові числа з першої координатної чверті.
- Якщо – дільник ґаусового числа , то та теж є дільниками числа . Звідси випливає, що для будь-якого натурального , не кратного 4, сума -тих степенів усіх дільників числа дорівнює 0. Тому в цій таблиці розглядається саме сума 4-тих степенів усіх дільників ненульового ґаусового числа.
Норма | Число | Розклад | |||
---|---|---|---|---|---|
2 | 1+i | просте | 8 | −12 | (1+i)4 |
4 | 2 | −i·(1+i)2 | 12 | 52 | 26 |
5 | 1+2i 2+i |
просте просте |
8 8 |
−24−96i −24+96i |
(1+2i)4 (2+i)4 |
8 | 2+2i | −i·(1+i)3 | 16 | −204 | (2+2i)8 |
9 | 3 | просте | 8 | 328 | 34 |
10 | 1+3i 3+i |
(1+i)·(2+i) −i·(1+i)·(1+2i) |
16 16 |
72−288i 72+288i |
(1+3i)8 (3+i)8 |
13 | 2+3i 3+2i |
просте просте |
8 8 |
−472−480i −472+480i |
(2+3i)4 (3+2i)4 |
16 | 4 | −(1+i)4 | 20 | 820 | −410 |
17 | 1+4i 4+i |
просте просте |
8 8 |
648−960i 648+960i |
(1+4i)4 (4+i)4 |
18 | 3+3i | (1+i)·3 | 16 | −984 | (3+3i)8 |
20 | 2+4i 4+2i |
−i·(1+i)2·(1+2i) −i·(1+i)2·(2+i) |
24 24 |
−312−1248i −312+1248i |
(2+4i)12 (4+2i)12 |
25 | 3+4i 4+3i 5 |
(2+i)2 −i·(1+2i)2 −i·(1+2i)·(2+i) |
12 12 16 |
−2132−1248i −2132+1248i 2448 |
−(3+4i)6 (4+3i)6 58 |
26 | 1+5i 5+i |
(1+i)·(3+2i) −i·(1+i)·(2+3i) |
16 16 |
1416−1440i 1416+1440i |
(1+5i)8 (5+i)8 |
29 | 2+5i 5+2i |
просте просте |
8 8 |
168−3360i 168+3360i |
(2+5i)4 (5+2i)4 |
32 | 4+4i | −(1+i)5 | 24 | −3276 | (4+4i)12 |
34 | 3+5i 5+3i |
(1+i)·(4+i) −i·(1+i)·(1+4i) |
16 16 |
−1944−2880i −1944+2880i |
(3+5i)8 (5+3i)8 |
36 | 6 | −i·(1+i)2·3 | 24 | 4264 | 612 |
37 | 1+6i 6+i |
просте просте |
8 8 |
4328−3360i 4328+3360i |
(1+6i)4 (6+i)4 |
40 | 2+6i 6+2i |
−i·(1+i)3·(2+i) −(1+i)3·(1+2i) |
32 32 |
1224−4896i 1224+4896i |
(2+6i)16 (6+2i)16 |
41 | 4+5i 5+4i |
просте просте |
8 8 |
−6072−2880i −6072+2880i |
(4+5i)4 (5+4i)4 |
45 | 3+6i 6+3i |
(1+2i)·3 (2+i)·3 |
16 16 |
−1968−7872i −1968+7872i |
(3+6i)8 (6+3i)8 |
49 | 7 | просте | 8 | 9608 | 74 |
50 | 5+5i 1+7i 7+i |
−i·(1+i)·(1+2i)·(2+i) −i·(1+i)·(1+2i)2 −i·(1+i)·(2+i)2 |
32 24 24 |
−7344 6396−3744i 6396+3744i |
(5+5i)16 (1+7i)12 (7+i)12 |
52 | 4+6i 6+4i |
−i·(1+i)2·(2+3i) −i·(1+i)2·(3+2i) |
24 24 |
−6136−6240i −6136+6240i |
(4+6i)12 (6+4i)12 |
53 | 2+7i 7+2i |
просте просте |
8 8 |
4968−10080i 4968+10080i |
(2+7i)4 (7+2i)4 |
58 | 3+7i 7+3i |
(1+i)·(5+2i) −i·(1+i)·(2+5i) |
16 16 |
−504−10080i −504+10080i |
(3+7i)8 (7+3i)8 |
61 | 5+6i 6+5i |
просте просте |
8 8 |
−13912−5280i −13912+5280i |
(5+6i)4 (6+5i)4 |
64 | 8 | i·(1+i)6 | 28 | 13108 | 814 |
65 | 4+7i 7+4i 1+8i 8+i |
(2+i)·(3+2i) −i·(1+2i)·(2+3i) (2+i)·(2+3i) −i·(1+2i)·(3+2i) |
16 16 16 16 |
−8688−14208i −8688+14208i 14352−8448i 14352+8448i |
(4+7i)8 (7+4i)8 (1+8i)8 (8+i)8 |
68 | 2+8i 8+2i |
−i·(1+i)2·(1+4i) −i·(1+i)2·(4+i) |
24 24 |
8424−12480i 8424+12480i |
(2+8i)12 (8+2i)12 |
72 | 6+6i | −i·(1+i)3·3 | 32 | −16728 | (6+6i)16 |
73 | 3+8i 8+3i |
просте просте |
8 8 |
2888−21120i 2888+21120i |
(3+8i)4 (8+3i)4 |
74 | 5+7i 7+5i |
(1+i)·(6+i) −i·(1+i)·(1+6i) |
16 16 |
−12984−10080i −12984+10080i |
(5+7i)8 (7+5i)8 |
80 | 4+8i 8+4i |
−(1+i)4·(1+2i) −(1+i)4·(2+i) |
40 40 |
−4920−19680i −4920+19680i |
(4+8i)20 (8+4i)20 |
81 | 9 | 32 | 12 | 26572 | −96 |
82 | 1+9i 9+i |
(1+i)·(5+4i) −i·(1+i)·(4+5i) |
16 16 |
18216−8640i 18216+8640i |
(1+9i)8 (9+i)8 |
85 | 6+7i 7+6i 2+9i 9+2i |
−i·(1+2i)·(1+4i) (2+i)·(4+i) (1+2i)·(4+i) −i·(1+4i)·(2+i) |
16 16 16 16 |
−26928−9792i −26928+9792i 19152−21312i 19152+21312i |
(6+7i)8 (7+6i)8 (2+9i)8 (9+2i)8 |
89 | 5+8i 8+5i |
просте просте |
8 8 |
−19512−24960i −19512+24960i |
(5+8i)4 (8+5i)4 |
90 | 3+9i 9+3i |
(1+i)·(2+i)·3 −i·(1+i)·(1+2i)·3 |
32 32 |
5904−23616i 5904+23616i |
(3+9i)16 (9+3i)16 |
97 | 4+9i 9+4i |
просте просте |
8 8 |
−3832−37440i −3832+37440i |
(4+9i)4 (9+4i)4 |
98 | 7+7i | (1+i)·7 | 16 | −28824 | (7+7i)8 |
100 | 6+8i 8+6i 10 |
−i·(1+i)2·(2+i)2 −(1+i)2·(1+2i)2 −(1+i)2·(1+2i)·(2+i) |
36 36 48 |
−27716−16224i −27716+16224i 31824 |
(6+8i)18 −(8+6i)18 1024 |
101 | 1+10i 10+i |
просте просте |
8 8 |
37608−15840i 37608+15840i |
(1+10i)4 (10+i)4 |
104 | 2+10i 10+2i |
−i·(1+i)3·(3+2i) −(1+i)3·(2+3i) |
32 32 |
24072−24480i 24072+24480i |
(2+10i)16 (10+2i)16 |
106 | 5+9i 9+5i |
(1+i)·(7+2i) −i·(1+i)·(2+7i) |
16 16 |
−14904−30240i −14904+30240i |
(5+9i)8 (9+5i)8 |
109 | 3+10i 10+3i |
просте просте |
8 8 |
18728−43680i 18728+43680i |
(3+10i)4 (10+3i)4 |
113 | 7+8i 8+7i |
просте просте |
8 8 |
−49272−13440i −49272+13440i |
(7+8i)4 (8+7i)4 |
116 | 4+10i 10+4i |
−i·(1+i)2·(2+5i) −i·(1+i)2·(5+2i) |
24 24 |
2184−43680i 2184+43680i |
(4+10i)12 (10+4i)12 |
117 | 6+9i 9+6i |
(2+3i)·3 3·(3+2i) |
16 16 |
−38704−39360i −38704+39360i |
(6+9i)8 (9+6i)8 |
121 | 11 | просте | 8 | 58568 | 114 |
122 | 1+11i 11+i |
(1+i)·(6+5i) −i·(1+i)·(5+6i) |
16 16 |
41736−15840i 41736+15840i |
(1+11i)8 (11+i)8 |
125 | 5+10i 10+5i 2+11i 11+2i |
−i·(1+2i)2·(2+i) −i·(1+2i)·(2+i)2 (2+i)3 −(1+2i)3 |
24 24 16 16 |
−17160−58656i −17160+58656i 44880−42432i 44880+42432i |
(5+10i)12 (10+5i)12 (2+11i)8 (11+2i)8 |
128 | 8+8i | i·(1+i)7 | 32 | −52428 | (8+8i)16 |
130 | 7+9i 9+7i 3+11i 11+3i |
−i·(1+i)·(1+2i)·(3+2i) −i·(1+i)·(2+i)·(2+3i) −i·(1+i)·(1+2i)·(2+3i) −i·(1+i)·(2+i)·(3+2i) |
32 32 32 32 |
−43056−25344i −43056+25344i 26064−42624i 26064+42624i |
(7+9i)16 (9+7i)16 (3+11i)16 (11+3i)16 |
136 | 6+10i 10+6i |
−i·(1+i)3·(4+i) −(1+i)3·(1+4i) |
32 32 |
−33048−48960i −33048+48960i |
(6+10i)16 (10+6i)16 |
137 | 4+11i 11+4i |
просте просте |
8 8 |
13128−73920i 13128+73920i |
(4+11i)4 (11+4i)4 |
144 | 12 | −(1+i)4·3 | 40 | 67240 | 1220 |
145 | 8+9i 9+8i 1+12i 12+i |
(2+i)·(5+2i) −i·(1+2i)·(2+5i) (1+2i)·(5+2i) −i·(2+i)·(2+5i) |
16 16 16 16 |
−81648−16128i −81648+16128i 79632−24192i 79632+24192i |
(8+9i)8 (9+8i)8 (1+12i)8 (12+i)8 |
146 | 5+11i 11+5i |
(1+i)·(8+3i) −i·(1+i)·(3+8i) |
16 16 |
−8664−63360i −8664+63360i |
(5+11i)8 (11+5i)8 |
148 | 2+12i 12+2i |
−i·(1+i)2·(1+6i) −i·(1+i)2·(6+i) |
24 24 |
56264−43680i 56264+43680i |
(2+12i)12 (12+2i)12 |
149 | 7+10i 10+7i |
просте просте |
8 8 |
−67992−57120i −67992+57120i |
(7+10i)4 (10+7i)4 |
153 | 3+12i 12+3i |
(1+4i)·3 3·(4+i) |
16 16 |
53136−78720i 53136+78720i |
(3+12i)8 (12+3i)8 |
157 | 6+11i 11+6i |
просте просте |
8 8 |
−40792−89760i −40792+89760i |
(6+11i)4 (11+6i)4 |
160 | 4+12i 12+4i |
−(1+i)5·(2+i) i·(1+i)5·(1+2i) |
48 48 |
19656−78624i 19656+78624i |
(4+12i)24 (12+4i)24 |
162 | 9+9i | (1+i)·32 | 24 | −79716 | (9+9i)12 |
164 | 8+10i 10+8i |
−i·(1+i)2·(4+5i) −i·(1+i)2·(5+4i) |
24 24 |
−78936−37440i −78936+37440i |
(8+10i)12 (10+8i)12 |
169 | 5+12i 12+5i 13 |
(3+2i)2 −i·(2+3i)2 −i·(2+3i)·(3+2i) |
12 12 16 |
−1428−113760i −1428+113760i 113296 |
−(5+12i)6 (12+5i)6 138 |
170 | 7+11i 11+7i 1+13i 13+i |
−i·(1+i)·(1+4i)·(2+i) −i·(1+i)·(1+2i)·(4+i) (1+i)·(2+i)·(4+i) −(1+i)·(1+2i)·(1+4i) |
32 32 32 32 |
−57456−63936i −57456+63936i 80784−29376i 80784+29376i |
(7+11i)16 (11+7i)16 (1+13i)16 (13+i)16 |
173 | 2+13i 13+2i |
просте просте |
8 8 |
98088−68640i 98088+68640i |
(2+13i)4 (13+2i)4 |
178 | 3+13i 13+3i |
(1+i)·(8+5i) −i·(1+i)·(5+8i) |
16 16 |
58536−74880i 58536+74880i |
(3+13i)8 (13+3i)8 |
180 | 6+12i 12+6i |
−i·(1+i)2·(1+2i)·3 −i·(1+i)2·(2+i)·3 |
48 48 |
−25584−102336i −25584+102336i |
(6+12i)24 (12+6i)24 |
181 | 9+10i 10+9i |
просте просте |
8 8 |
−128152−27360i −128152+27360i |
(9+10i)4 (10+9i)4 |
185 | 8+11i 11+8i 4+13i 13+4i |
−i·(1+2i)·(1+6i) (2+i)·(6+i) (1+2i)·(6+i) −i·(1+6i)·(2+i) |
16 16 16 16 |
−106608−83712i −106608+83712i 54672−124032i 54672+124032i |
(8+11i)8 (11+8i)8 (4+13i)8 (13+4i)8 |
193 | 7+12i 12+7i |
просте просте |
8 8 |
−76792−127680i −76792+127680i |
(7+12i)4 (12+7i)4 |
194 | 5+13i 13+5i |
(1+i)·(9+4i) −i·(1+i)·(4+9i) |
16 16 |
11496−112320i 11496+112320i |
(5+13i)8 (13+5i)8 |
196 | 14 | −i·(1+i)2·7 | 24 | 124904 | 1412 |
197 | 1+14i 14+i |
просте просте |
8 8 |
148968−43680i 148968+43680i |
(1+14i)4 (14+i)4 |
200 | 10+10i 2+14i 14+2i |
−(1+i)3·(1+2i)·(2+i) −(1+i)3·(1+2i)2 −(1+i)3·(2+i)2 |
64 48 48 |
−124848 108732−63648i 108732+63648i |
(10+10i)32 (2+14i)24 (14+2i)24 |
202 | 9+11i 11+9i |
(1+i)·(10+i) −i·(1+i)·(1+10i) |
16 16 |
−112824−47520i −112824+47520i |
(9+11i)8 (11+9i)8 |
205 | 6+13i 13+6i 3+14i 14+3i |
(2+i)·(5+4i) −i·(1+2i)·(4+5i) (2+i)·(4+5i) −i·(1+2i)·(5+4i) |
16 16 16 16 |
−32688−163008i −32688+163008i 105552−128448i 105552+128448i |
(6+13i)8 (13+6i)8 (3+14i)8 (14+3i)8 |
208 | 8+12i 12+8i |
−(1+i)4·(2+3i) −(1+i)4·(3+2i) |
40 40 |
−96760−98400i −96760+98400i |
(8+12i)20 (12+8i)20 |
212 | 4+14i 14+4i |
−i·(1+i)2·(2+7i) −i·(1+i)2·(7+2i) |
24 24 |
64584−131040i 64584+131040i |
(4+14i)12 (14+4i)12 |
218 | 7+13i 13+7i |
(1+i)·(10+3i) −i·(1+i)·(3+10i) |
16 16 |
−56184−131040i −56184+131040i |
(7+13i)8 (13+7i)8 |
221 | 10+11i 11+10i 5+14i 14+5i |
(3+2i)·(4+i) −i·(1+4i)·(2+3i) (2+3i)·(4+i) −i·(1+4i)·(3+2i) |
16 16 16 16 |
−191664−35520i −191664+35520i 38736−191040i 38736+191040i |
(10+11i)8 (11+10i)8 (5+14i)8 (14+5i)8 |
225 | 9+12i 12+9i 15 |
(2+i)2·3 −i·(1+2i)2·3 −i·(1+2i)·(2+i)·3 |
24 24 32 |
−174824−102336i −174824+102336i 200736 |
(9+12i)12 (12+9i)12 1516 |
226 | 1+15i 15+i |
(1+i)·(8+7i) −i·(1+i)·(7+8i) |
16 16 |
147816−40320i 147816+40320i |
(1+15i)8 (15+i)8 |
229 | 2+15i 15+2i |
просте просте |
8 8 |
180968−106080i 180968+106080i |
(2+15i)4 (15+2i)4 |
232 | 6+14i 14+6i |
−i·(1+i)3·(5+2i) −(1+i)3·(2+5i) |
32 32 |
−8568−171360i −8568+171360i |
(6+14i)16 (14+6i)16 |
233 | 8+13i 13+8i |
просте просте |
8 8 |
−128952−174720i −128952+174720i |
(8+13i)4 (13+8i)4 |
234 | 3+15i 15+3i |
(1+i)·3·(3+2i) −i·(1+i)·(2+3i)·3 |
32 32 |
116112−118080i 116112+118080i |
(3+15i)16 (15+3i)16 |
241 | 4+15i 15+4i |
просте просте |
8 8 |
117128−200640i 117128+200640i |
(4+15i)4 (15+4i)4 |
242 | 11+11i | (1+i)·11 | 16 | −175704 | (11+11i)8 |
244 | 10+12i 12+10i |
−i·(1+i)2·(5+6i) −i·(1+i)2·(6+5i) |
24 24 |
−180856−68640i −180856+68640i |
(10+12i)12 (12+10i)12 |
245 | 7+14i 14+7i |
(1+2i)·7 (2+i)·7 |
16 16 |
−57648−230592i −57648+230592i |
(7+14i)8 (14+7i)8 |
250 | 9+13i 13+9i 5+15i 15+5i |
−(1+i)·(1+2i)3 −i·(1+i)·(2+i)3 −i·(1+i)·(1+2i)·(2+i)2 −(1+i)·(1+2i)2·(2+i) |
32 32 48 48 |
−134640−127296i −134640+127296i 51480−175968i 51480+175968i |
(9+13i)16 (13+9i)16 (5+15i)24 (15+5i)24 |
256 | 16 | (1+i)8 | 36 | 209716 | −1618 |
257 | 1+16i 16+i |
просте просте |
8 8 |
256008−65280i 256008+65280i |
(1+16i)4 (16+i)4 |
260 | 8+14i 14+8i 2+16i 16+2i |
−i·(1+i)2·(2+i)·(3+2i) −(1+i)2·(1+2i)·(2+3i) −i·(1+i)2·(2+i)·(2+3i) −(1+i)2·(1+2i)·(3+2i) |
48 48 48 48 |
−112944−184704i −112944+184704i 186576−109824i 186576+109824i |
(8+14i)24 (14+8i)24 (2+16i)24 (16+2i)24 |
261 | 6+15i 15+6i |
(2+5i)·3 3·(5+2i) |
16 16 |
13776−275520i 13776+275520i |
(6+15i)8 (15+6i)8 |
265 | 11+12i 12+11i 3+16i 16+3i |
−i·(1+2i)·(2+7i) (2+i)·(7+2i) (1+2i)·(7+2i) −i·(2+i)·(2+7i) |
16 16 16 16 |
−271728−58752i −271728+58752i 212112−179712i 212112+179712i |
(11+12i)8 (12+11i)8 (3+16i)8 (16+3i)8 |
269 | 10+13i 13+10i |
просте просте |
8 8 |
−251352−143520i −251352+143520i |
(10+13i)4 (13+10i)4 |
272 | 4+16i 16+4i |
−(1+i)4·(1+4i) −(1+i)4·(4+i) |
40 40 |
132840−196800i 132840+196800i |
(4+16i)20 (16+4i)20 |
274 | 7+15i 15+7i |
(1+i)·(11+4i) −i·(1+i)·(4+11i) |
16 16 |
−39384−221760i −39384+221760i |
(7+15i)8 (15+7i)8 |
277 | 9+14i 14+9i |
просте просте |
8 8 |
−201112−231840i −201112+231840i |
(9+14i)4 (14+9i)4 |
281 | 5+16i 16+5i |
просте просте |
8 8 |
111048−295680i 111048+295680i |
(5+16i)4 (16+5i)4 |
288 | 12+12i | −(1+i)5·3 | 48 | −268632 | (12+12i)24 |
289 | 8+15i 15+8i 17 |
−i·(1+4i)2 (4+i)2 −i·(1+4i)·(4+i) |
12 12 16 |
−126068−310080i −126068+310080i 335376 |
(8+15i)6 −(15+8i)6 178 |
290 | 11+13i 13+11i 1+17i 17+i |
−i·(1+i)·(2+i)·(2+5i) −i·(1+i)·(1+2i)·(5+2i) −i·(1+i)·(1+2i)·(2+5i) −i·(1+i)·(2+i)·(5+2i) |
32 32 32 32 |
−238896−72576i −238896+72576i 244944−48384i 244944+48384i |
(11+13i)16 (13+11i)16 (1+17i)16 (17+i)16 |
292 | 6+16i 16+6i |
−i·(1+i)2·(3+8i) −i·(1+i)2·(8+3i) |
24 24 |
37544−274560i 37544+274560i |
(6+16i)12 (16+6i)12 |
293 | 2+17i 17+2i |
просте просте |
8 8 |
306408−155040i 306408+155040i |
(2+17i)4 (17+2i)4 |
296 | 10+14i 14+10i |
−i·(1+i)3·(6+i) −(1+i)3·(1+6i) |
32 32 |
−220728−171360i −220728+171360i |
(10+14i)16 (14+10i)16 |
298 | 3+17i 17+3i |
(1+i)·(10+7i) −i·(1+i)·(7+10i) |
16 16 |
203976−171360i 203976+171360i |
(3+17i)8 (17+3i)8 |
305 | 7+16i 16+7i 4+17i 17+4i |
(2+i)·(6+5i) −i·(1+2i)·(5+6i) (2+i)·(5+6i) −i·(1+2i)·(6+5i) |
16 16 16 16 |
−43248−365568i −43248+365568i 210192−302208i 210192+302208i |
(7+16i)8 (16+7i)8 (4+17i)8 (17+4i)8 |
306 | 9+15i 15+9i |
(1+i)·3·(4+i) −i·(1+i)·(1+4i)·3 |
32 32 |
−159408−236160i −159408+236160i |
(9+15i)16 (15+9i)16 |
313 | 12+13i 13+12i |
просте просте |
8 8 |
−386872−62400i −386872+62400i |
(12+13i)4 (13+12i)4 |
314 | 5+17i 17+5i |
(1+i)·(11+6i) −i·(1+i)·(6+11i) |
16 16 |
122376−269280i 122376+269280i |
(5+17i)8 (17+5i)8 |
317 | 11+14i 14+11i |
просте просте |
8 8 |
−356952−184800i −356952+184800i |
(11+14i)4 (14+11i)4 |
320 | 8+16i 16+8i |
i·(1+i)6·(1+2i) i·(1+i)6·(2+i) |
56 56 |
−78648−314592i −78648+314592i |
(8+16i)28 (16+8i)28 |
324 | 18 | −i·(1+i)2·32 | 36 | 345436 | 1818 |
325 | 10+15i 15+10i 6+17i 17+6i 1+18i 18+i |
−i·(1+2i)·(2+i)·(2+3i) −i·(1+2i)·(2+i)·(3+2i) −i·(1+2i)2·(3+2i) −i·(2+i)2·(2+3i) (2+i)2·(3+2i) −(1+2i)2·(2+3i) |
32 32 24 24 24 24 |
−288864−293760i −288864+293760i 101816−403104i 101816+403104i 401336−108576i 401336+108576i |
(10+15i)16 (15+10i)16 (6+17i)12 (17+6i)12 (1+18i)12 (18+i)12 |
328 | 2+18i 18+2i |
−i·(1+i)3·(5+4i) −(1+i)3·(4+5i) |
32 32 |
309672−146880i 309672+146880i |
(2+18i)16 (18+2i)16 |
333 | 3+18i 18+3i |
(1+6i)·3 3·(6+i) |
16 16 |
354896−275520i 354896+275520i |
(3+18i)8 (18+3i)8 |
337 | 9+16i 16+9i |
просте просте |
8 8 |
−209272−403200i −209272+403200i |
(9+16i)4 (16+9i)4 |
338 | 13+13i 7+17i 17+7i |
−i·(1+i)·(2+3i)·(3+2i) −i·(1+i)·(2+3i)2 −i·(1+i)·(3+2i)2 |
32 24 24 |
−339888 4284−341280i 4284+341280i |
(13+13i)16 (7+17i)12 (17+7i)12 |
340 | 12+14i 14+12i 4+18i 18+4i |
−(1+i)2·(1+2i)·(1+4i) −i·(1+i)2·(2+i)·(4+i) −i·(1+i)2·(1+2i)·(4+i) −(1+i)2·(1+4i)·(2+i) |
48 48 48 48 |
−350064−127296i −350064+127296i 248976−277056i 248976+277056i |
(12+14i)24 (14+12i)24 (4+18i)24 (18+4i)24 |
346 | 11+15i 15+11i |
(1+i)·(13+2i) −i·(1+i)·(2+13i) |
16 16 |
−294264−205920i −294264+205920i |
(11+15i)8 (15+11i)8 |
349 | 5+18i 18+5i |
просте просте |
8 8 |
228008−430560i 228008+430560i |
(5+18i)4 (18+5i)4 |
353 | 8+17i 17+8i |
просте просте |
8 8 |
−93432−489600i −93432+489600i |
(8+17i)4 (17+8i)4 |
356 | 10+16i 16+10i |
−i·(1+i)2·(5+8i) −i·(1+i)2·(8+5i) |
24 24 |
−253656−324480i −253656+324480i |
(10+16i)12 (16+10i)12 |
360 | 6+18i 18+6i |
−i·(1+i)3·(2+i)·3 −(1+i)3·(1+2i)·3 |
64 64 |
100368−401472i 100368+401472i |
(6+18i)32 (18+6i)32 |
361 | 19 | просте | 8 | 521288 | 194 |
362 | 1+19i 19+i |
(1+i)·(10+9i) −i·(1+i)·(9+10i) |
16 16 |
384456−82080i 384456+82080i |
(1+19i)8 (19+i)8 |
365 | 13+14i 14+13i 2+19i 19+2i |
(2+i)·(8+3i) −i·(1+2i)·(3+8i) (1+2i)·(8+3i) −i·(2+i)·(3+8i) |
16 16 16 16 |
−524208−57408i −524208+57408i 489552−196032i 489552+196032i |
(13+14i)8 (14+13i)8 (2+19i)8 (19+2i)8 |
369 | 12+15i 15+12i |
3·(4+5i) 3·(5+4i) |
16 16 |
−497904−236160i −497904+236160i |
(12+15i)8 (15+12i)8 |
370 | 9+17i 17+9i 3+19i 19+3i |
−i·(1+i)·(1+6i)·(2+i) −i·(1+i)·(1+2i)·(6+i) (1+i)·(2+i)·(6+i) −(1+i)·(1+2i)·(1+6i) |
32 32 32 32 |
−164016−372096i −164016+372096i 319824−251136i 319824+251136i |
(9+17i)16 (17+9i)16 (3+19i)16 (19+3i)16 |
373 | 7+18i 18+7i |
просте просте |
8 8 |
48488−554400i 48488+554400i |
(7+18i)4 (18+7i)4 |
377 | 11+16i 16+11i 4+19i 19+4i |
(3+2i)·(5+2i) −i·(2+3i)·(2+5i) (2+3i)·(5+2i) −i·(2+5i)·(3+2i) |
16 16 16 16 |
−423024−376320i −423024+376320i 383376−416640i 383376+416640i |
(11+16i)8 (16+11i)8 (4+19i)8 (19+4i)8 |
386 | 5+19i 19+5i |
(1+i)·(12+7i) −i·(1+i)·(7+12i) |
16 16 |
230376−383040i 230376+383040i |
(5+19i)8 (19+5i)8 |
388 | 8+18i 18+8i |
−i·(1+i)2·(4+9i) −i·(1+i)2·(9+4i) |
24 24 |
−49816−486720i −49816+486720i |
(8+18i)12 (18+8i)12 |
389 | 10+17i 17+10i |
просте просте |
8 8 |
−319512−514080i −319512+514080i |
(10+17i)4 (17+10i)4 |
392 | 14+14i | −i·(1+i)3·7 | 32 | −490008 | (14+14i)16 |
394 | 13+15i 15+13i |
(1+i)·(14+i) −i·(1+i)·(1+14i) |
16 16 |
−446904−131040i −446904+131040i |
(13+15i)8 (15+13i)8 |
397 | 6+19i 19+6i |
просте просте |
8 8 |
214568−592800i 214568+592800i |
(6+19i)4 (19+6i)4 |
400 | 12+16i 16+12i 20 |
−(1+i)4·(2+i)2 i·(1+i)4·(1+2i)2 i·(1+i)4·(1+2i)·(2+i) |
60 60 80 |
−437060−255840i −437060+255840i 501840 |
−(12+16i)30 (16+12i)30 2040 |
401 | 1+20i 20+i |
просте просте |
8 8 |
630408−127680i 630408+127680i |
(1+20i)4 (20+i)4 |
404 | 2+20i 20+2i |
−i·(1+i)2·(1+10i) −i·(1+i)2·(10+i) |
24 24 |
488904−205920i 488904+205920i |
(2+20i)12 (20+2i)12 |
405 | 9+18i 18+9i |
(1+2i)·32 (2+i)·32 |
24 24 |
−159432−637728i −159432+637728i |
(9+18i)12 (18+9i)12 |
409 | 3+20i 20+3i |
просте просте |
8 8 |
553928−375360i 553928+375360i |
(3+20i)4 (20+3i)4 |
410 | 11+17i 17+11i 7+19i 19+7i |
−i·(1+i)·(1+2i)·(5+4i) −i·(1+i)·(2+i)·(4+5i) −i·(1+i)·(1+2i)·(4+5i) −i·(1+i)·(2+i)·(5+4i) |
32 32 32 32 |
−316656−385344i −316656+385344i 98064−489024i 98064+489024i |
(11+17i)16 (17+11i)16 (7+19i)16 (19+7i)16 |
416 | 4+20i 20+4i |
−(1+i)5·(3+2i) i·(1+i)5·(2+3i) |
48 48 |
386568−393120i 386568+393120i |
(4+20i)24 (20+4i)24 |
421 | 14+15i 15+14i |
просте просте |
8 8 |
−702232−97440i −702232+97440i |
(14+15i)4 (15+14i)4 |
424 | 10+18i 18+10i |
−i·(1+i)3·(7+2i) −(1+i)3·(2+7i) |
32 32 |
−253368−514080i −253368+514080i |
(10+18i)16 (18+10i)16 |
425 | 13+16i 16+13i 8+19i 19+8i 5+20i 20+5i |
−i·(1+2i)2·(4+i) −i·(1+4i)·(2+i)2 (2+i)2·(4+i) −(1+2i)2·(1+4i) −i·(1+2i)·(1+4i)·(2+i) −i·(1+2i)·(2+i)·(4+i) |
24 24 24 24 32 32 |
−644904−309504i −644904+309504i −45864−713856i −45864+713856i 396576−587520i 396576+587520i |
(13+16i)12 (16+13i)12 (8+19i)12 (19+8i)12 (5+20i)16 (20+5i)16 |
433 | 12+17i 17+12i |
просте просте |
8 8 |
−581752−473280i −581752+473280i |
(12+17i)4 (17+12i)4 |
436 | 6+20i 20+6i |
−i·(1+i)2·(3+10i) −i·(1+i)2·(10+3i) |
24 24 |
243464−567840i 243464+567840i |
(6+20i)12 (20+6i)12 |
441 | 21 | 3·7 | 16 | 787856 | 218 |
442 | 9+19i 19+9i 1+21i 21+i |
−i·(1+i)·(1+4i)·(3+2i) −i·(1+i)·(2+3i)·(4+i) −i·(1+i)·(1+4i)·(2+3i) −i·(1+i)·(3+2i)·(4+i) |
32 32 32 32 |
−116208−573120i −116208+573120i 574992−106560i 574992+106560i |
(9+19i)16 (19+9i)16 (1+21i)16 (21+i)16 |
445 | 11+18i 18+11i 2+21i 21+2i |
(2+i)·(8+5i) −i·(1+2i)·(5+8i) (2+i)·(5+8i) −i·(1+2i)·(8+5i) |
16 16 16 16 |
−481968−618048i −481968+618048i 716112−318528i 716112+318528i |
(11+18i)8 (18+11i)8 (2+21i)8 (21+2i)8 |
449 | 7+20i 20+7i |
просте просте |
8 8 |
179208−786240i 179208+786240i |
(7+20i)4 (20+7i)4 |
450 | 15+15i 3+21i 21+3i |
−i·(1+i)·(1+2i)·(2+i)·3 −i·(1+i)·(1+2i)2·3 −i·(1+i)·(2+i)2·3 |
64 48 48 |
−602208 524472−307008i 524472+307008i |
(15+15i)32 (3+21i)24 (21+3i)24 |
452 | 14+16i 16+14i |
−i·(1+i)2·(7+8i) −i·(1+i)2·(8+7i) |
24 24 |
−640536−174720i −640536+174720i |
(14+16i)12 (16+14i)12 |
457 | 4+21i 21+4i |
просте просте |
8 8 |
609608−571200i 609608+571200i |
(4+21i)4 (21+4i)4 |
458 | 13+17i 17+13i |
(1+i)·(15+2i) −i·(1+i)·(2+15i) |
16 16 |
−542904−318240i −542904+318240i |
(13+17i)8 (17+13i)8 |
461 | 10+19i 19+10i |
просте просте |
8 8 |
−305112−793440i −305112+793440i |
(10+19i)4 (19+10i)4 |
464 | 8+20i 20+8i |
−(1+i)4·(2+5i) −(1+i)4·(5+2i) |
40 40 |
34440−688800i 34440+688800i |
(8+20i)20 (20+8i)20 |
466 | 5+21i 21+5i |
(1+i)·(13+8i) −i·(1+i)·(8+13i) |
16 16 |
386856−524160i 386856+524160i |
(5+21i)8 (21+5i)8 |
468 | 12+18i 18+12i |
−i·(1+i)2·(2+3i)·3 −i·(1+i)2·3·(3+2i) |
48 48 |
−503152−511680i −503152+511680i |
(12+18i)24 (18+12i)24 |
477 | 6+21i 21+6i |
(2+7i)·3 3·(7+2i) |
16 16 |
407376−826560i 407376+826560i |
(6+21i)8 (21+6i)8 |
481 | 15+16i 16+15i 9+20i 20+9i |
−i·(1+6i)·(2+3i) (3+2i)·(6+i) (2+3i)·(6+i) −i·(1+6i)·(3+2i) |
16 16 16 16 |
−913904−122880i −913904+122880i −107504−915840i −107504+915840i |
(15+16i)8 (16+15i)8 (9+20i)8 (20+9i)8 |
482 | 11+19i 19+11i |
(1+i)·(15+4i) −i·(1+i)·(4+15i) |
16 16 |
−351384−601920i −351384+601920i |
(11+19i)8 (19+11i)8 |
484 | 22 | −i·(1+i)2·11 | 24 | 761384 | 2212 |
485 | 14+17i 17+14i 1+22i 22+i |
(2+i)·(9+4i) −i·(1+2i)·(4+9i) (1+2i)·(9+4i) −i·(2+i)·(4+9i) |
16 16 16 16 |
−875568−316608i −875568+316608i 921552−132672i 921552+132672i |
(14+17i)8 (17+14i)8 (1+22i)8 (22+i)8 |
488 | 2+22i 22+2i |
−i·(1+i)3·(6+5i) −(1+i)3·(5+6i) |
32 32 |
709512−269280i 709512+269280i |
(2+22i)16 (22+2i)16 |
490 | 7+21i 21+7i |
(1+i)·(2+i)·7 −i·(1+i)·(1+2i)·7 |
32 32 |
172944−691776i 172944+691776i |
(7+21i)16 (21+7i)16 |
493 | 13+18i 18+13i 3+22i 22+3i |
−i·(1+4i)·(2+5i) (4+i)·(5+2i) (2+5i)·(4+i) −i·(1+4i)·(5+2i) |
16 16 16 16 |
−779184−584640i −779184+584640i 833616−504000i 833616+504000i |
(13+18i)8 (18+13i)8 (3+22i)8 (22+3i)8 |
500 | 10+20i 20+10i 4+22i 22+4i |
−(1+i)2·(1+2i)2·(2+i) −(1+i)2·(1+2i)·(2+i)2 −i·(1+i)2·(2+i)3 i·(1+i)2·(1+2i)3 |
72 72 48 48 |
−223080−762528i −223080+762528i 583440−551616i 583440+551616i |
(10+20i)36 (20+10i)36 (4+22i)24 (22+4i)24 |
505 | 12+19i 19+12i 8+21i 21+8i |
−i·(1+2i)·(1+10i) (2+i)·(10+i) (1+2i)·(10+i) −i·(1+10i)·(2+i) |
16 16 16 16 |
−605808−807552i −605808+807552i 154512−997632i 154512+997632i |
(12+19i)8 (19+12i)8 (8+21i)8 (21+8i)8 |
509 | 5+22i 22+5i |
просте просте |
8 8 |
649128−807840i 649128+807840i |
(5+22i)4 (22+5i)4 |
512 | 16+16i | (1+i)9 | 40 | −838860 | (16+16i)20 |
514 | 15+17i 17+15i |
(1+i)·(16+i) −i·(1+i)·(1+16i) |
16 16 |
−768024−195840i −768024+195840i |
(15+17i)8 (17+15i)8 |
520 | 14+18i 18+14i 6+22i 22+6i |
−(1+i)3·(1+2i)·(3+2i) −(1+i)3·(2+i)·(2+3i) −(1+i)3·(1+2i)·(2+3i) −(1+i)3·(2+i)·(3+2i) |
64 64 64 64 |
−731952−430848i −731952+430848i 443088−724608i 443088+724608i |
(14+18i)32 (18+14i)32 (6+22i)32 (22+6i)32 |
521 | 11+20i 20+11i |
просте просте |
8 8 |
−463032−982080i −463032+982080i |
(11+20i)4 (20+11i)4 |
522 | 9+21i 21+9i |
(1+i)·3·(5+2i) −i·(1+i)·(2+5i)·3 |
32 32 |
−41328−826560i −41328+826560i |
(9+21i)16 (21+9i)16 |
529 | 23 | просте | 8 | 1119368 | 234 |
530 | 13+19i 19+13i 1+23i 23+i |
−i·(1+i)·(2+i)·(2+7i) −i·(1+i)·(1+2i)·(7+2i) (1+i)·(2+i)·(7+2i) −(1+i)·(1+2i)·(2+7i) |
32 32 32 32 |
−636336−539136i −636336+539136i 815184−176256i 815184+176256i |
(13+19i)16 (19+13i)16 (1+23i)16 (23+i)16 |
533 | 7+22i 22+7i 2+23i 23+2i |
(3+2i)·(5+4i) −i·(2+3i)·(4+5i) (3+2i)·(4+5i) −i·(2+3i)·(5+4i) |
16 16 16 16 |
370896−1068480i 370896+1068480i 1062096−388800i 1062096+388800i |
(7+22i)8 (22+7i)8 (2+23i)8 (23+2i)8 |
538 | 3+23i 23+3i |
(1+i)·(13+10i) −i·(1+i)·(10+13i) |
16 16 |
754056−430560i 754056+430560i |
(3+23i)8 (23+3i)8 |
541 | 10+21i 21+10i |
просте просте |
8 8 |
−240472−1145760i −240472+1145760i |
(10+21i)4 (21+10i)4 |
544 | 12+20i 20+12i |
−(1+i)5·(4+i) i·(1+i)5·(1+4i) |
48 48 |
−530712−786240i −530712+786240i |
(12+20i)24 (20+12i)24 |
545 | 16+17i 17+16i 4+23i 23+4i |
−i·(1+2i)·(3+10i) (2+i)·(10+3i) (1+2i)·(10+3i) −i·(2+i)·(3+10i) |
16 16 16 16 |
−1160688−187392i −1160688+187392i 935952−711552i 935952+711552i |
(16+17i)8 (17+16i)8 (4+23i)8 (23+4i)8 |
548 | 8+22i 22+8i |
−i·(1+i)2·(4+11i) −i·(1+i)2·(11+4i) |
24 24 |
170664−960960i 170664+960960i |
(8+22i)12 (22+8i)12 |
549 | 15+18i 18+15i |
3·(5+6i) 3·(6+5i) |
16 16 |
−1140784−432960i −1140784+432960i |
(15+18i)8 (18+15i)8 |
554 | 5+23i 23+5i |
(1+i)·(14+9i) −i·(1+i)·(9+14i) |
16 16 |
603336−695520i 603336+695520i |
(5+23i)8 (23+5i)8 |
557 | 14+19i 19+14i |
просте просте |
8 8 |
−1023192−702240i −1023192+702240i |
(14+19i)4 (19+14i)4 |
562 | 11+21i 21+11i |
(1+i)·(16+5i) −i·(1+i)·(5+16i) |
16 16 |
−333144−887040i −333144+887040i |
(11+21i)8 (21+11i)8 |
565 | 9+22i 22+9i 6+23i 23+6i |
(2+i)·(8+7i) −i·(1+2i)·(7+8i) (2+i)·(7+8i) −i·(1+2i)·(8+7i) |
16 16 16 16 |
−26928−1263168i −26928+1263168i 618192−1101888i 618192+1101888i |
(9+22i)8 (22+9i)8 (6+23i)8 (23+6i)8 |
569 | 13+20i 20+13i |
просте просте |
8 8 |
−868152−960960i −868152+960960i |
(13+20i)4 (20+13i)4 |
576 | 24 | i·(1+i)6·3 | 56 | 1074856 | 2428 |
577 | 1+24i 24+i |
просте просте |
8 8 |
1313288−220800i 1313288+220800i |
(1+24i)4 (24+i)4 |
578 | 17+17i 7+23i 23+7i |
−i·(1+i)·(1+4i)·(4+i) (1+i)·(4+i)2 −(1+i)·(1+4i)2 |
32 24 24 |
−1006128 378204−930240i 378204+930240i |
(17+17i)16 (7+23i)12 (23+7i)12 |
580 | 16+18i 18+16i 2+24i 24+2i |
−i·(1+i)2·(2+i)·(5+2i) −(1+i)2·(1+2i)·(2+5i) −i·(1+i)2·(1+2i)·(5+2i) −(1+i)2·(2+i)·(2+5i) |
48 48 48 48 |
−1061424−209664i −1061424+209664i 1035216−314496i 1035216+314496i |
(16+18i)24 (18+16i)24 (2+24i)24 (24+2i)24 |
584 | 10+22i 22+10i |
−i·(1+i)3·(8+3i) −(1+i)3·(3+8i) |
32 32 |
−147288−1077120i −147288+1077120i |
(10+22i)16 (22+10i)16 |
585 | 12+21i 21+12i 3+24i 24+3i |
(2+i)·3·(3+2i) −i·(1+2i)·(2+3i)·3 (2+i)·(2+3i)·3 −i·(1+2i)·3·(3+2i) |
32 32 32 32 |
−712416−1165056i −712416+1165056i 1176864−692736i 1176864+692736i |
(12+21i)16 (21+12i)16 (3+24i)16 (24+3i)16 |
586 | 15+19i 19+15i |
(1+i)·(17+2i) −i·(1+i)·(2+17i) |
16 16 |
−919224−465120i −919224+465120i |
(15+19i)8 (19+15i)8 |
592 | 4+24i 24+4i |
−(1+i)4·(1+6i) −(1+i)4·(6+i) |
40 40 |
887240−688800i 887240+688800i |
(4+24i)20 (24+4i)20 |
593 | 8+23i 23+8i |
просте просте |
8 8 |
323208−1368960i 323208+1368960i |
(8+23i)4 (23+8i)4 |
596 | 14+20i 20+14i |
−i·(1+i)2·(7+10i) −i·(1+i)2·(10+7i) |
24 24 |
−883896−742560i −883896+742560i |
(14+20i)12 (20+14i)12 |
601 | 5+24i 24+5i |
просте просте |
8 8 |
984008−1057920i 984008+1057920i |
(5+24i)4 (24+5i)4 |
605 | 11+22i 22+11i |
(1+2i)·11 (2+i)·11 |
16 16 |
−351408−1405632i −351408+1405632i |
(11+22i)8 (22+11i)8 |
610 | 13+21i 21+13i 9+23i 23+9i |
−i·(1+i)·(1+2i)·(6+5i) −i·(1+i)·(2+i)·(5+6i) −i·(1+i)·(1+2i)·(5+6i) −i·(1+i)·(2+i)·(6+5i) |
32 32 32 32 |
−630576−906624i −630576+906624i 129744−1096704i 129744+1096704i |
(13+21i)16 (21+13i)16 (9+23i)16 (23+9i)16 |
612 | 6+24i 24+6i |
−i·(1+i)2·(1+4i)·3 −i·(1+i)2·3·(4+i) |
48 48 |
690768−1023360i 690768+1023360i |
(6+24i)24 (24+6i)24 |
613 | 17+18i 18+17i |
просте просте |
8 8 |
−1493272−171360i −1493272+171360i |
(17+18i)4 (18+17i)4 |
617 | 16+19i 19+16i |
просте просте |
8 8 |
−1434552−510720i −1434552+510720i |
(16+19i)4 (19+16i)4 |
625 | 15+20i 20+15i 7+24i 24+7i 25 |
−i·(1+2i)·(2+i)3 −(1+2i)3·(2+i) −(1+2i)4 −i·(2+i)4 −(1+2i)2·(2+i)2 |
32 32 20 20 36 |
−1287648−822528i −1287648+822528i 704212−1374144i 704212+1374144i 1525732 |
(15+20i)16 (20+15i)16 −(7+24i)10 (24+7i)10 −2518 |
626 | 1+25i 25+i |
(1+i)·(13+12i) −i·(1+i)·(12+13i) |
16 16 |
1160616−187200i 1160616+187200i |
(1+25i)8 (25+i)8 |
628 | 12+22i 22+12i |
−i·(1+i)2·(6+11i) −i·(1+i)2·(11+6i) |
24 24 |
−530296−1166880i −530296+1166880i |
(12+22i)12 (22+12i)12 |
629 | 10+23i 23+10i 2+25i 25+2i |
−i·(1+4i)·(1+6i) (4+i)·(6+i) (1+4i)·(6+i) −i·(1+6i)·(4+i) |
16 16 16 16 |
−105264−1583040i −105264+1583040i 1507536−494400i 1507536+494400i |
(10+23i)8 (23+10i)8 (2+25i)8 (25+2i)8 |
634 | 3+25i 25+3i |
(1+i)·(14+11i) −i·(1+i)·(11+14i) |
16 16 |
1070856−554400i 1070856+554400i |
(3+25i)8 (25+3i)8 |
637 | 14+21i 21+14i |
(2+3i)·7 (3+2i)·7 |
16 16 |
−1133744−1152960i −1133744+1152960i |
(14+21i)8 (21+14i)8 |
640 | 8+24i 24+8i |
i·(1+i)7·(2+i) (1+i)7·(1+2i) |
64 64 |
314568−1258272i 314568+1258272i |
(8+24i)32 (24+8i)32 |
641 | 4+25i 25+4i |
просте просте |
8 8 |
1323528−974400i 1323528+974400i |
(4+25i)4 (25+4i)4 |
648 | 18+18i | −i·(1+i)3·32 | 48 | −1355172 | (18+18i)24 |
650 | 17+19i 19+17i 11+23i 23+11i 5+25i 25+5i |
−(1+i)·(1+2i)2·(2+3i) −i·(1+i)·(2+i)2·(3+2i) −i·(1+i)·(2+i)2·(2+3i) −(1+i)·(1+2i)2·(3+2i) −i·(1+i)·(1+2i)·(2+i)·(3+2i) −(1+i)·(1+2i)·(2+i)·(2+3i) |
48 48 48 48 64 64 |
−1204008−325728i −1204008+325728i −305448−1209312i −305448+1209312i 866592−881280i 866592+881280i |
(17+19i)24 (19+17i)24 (11+23i)24 (23+11i)24 (5+25i)32 (25+5i)32 |
653 | 13+22i 22+13i |
просте просте |
8 8 |
−911832−1441440i −911832+1441440i |
(13+22i)4 (22+13i)4 |
656 | 16+20i 20+16i |
−(1+i)4·(4+5i) −(1+i)4·(5+4i) |
40 40 |
−1244760−590400i −1244760+590400i |
(16+20i)20 (20+16i)20 |
657 | 9+24i 24+9i |
3·(3+8i) 3·(8+3i) |
16 16 |
236816−1731840i 236816+1731840i |
(9+24i)8 (24+9i)8 |
661 | 6+25i 25+6i |
просте просте |
8 8 |
1027688−1413600i 1027688+1413600i |
(6+25i)4 (25+6i)4 |
666 | 15+21i 21+15i |
(1+i)·3·(6+i) −i·(1+i)·(1+6i)·3 |
32 32 |
−1064688−826560i −1064688+826560i |
(15+21i)16 (21+15i)16 |
673 | 12+23i 23+12i |
просте просте |
8 8 |
−625912−1700160i −625912+1700160i |
(12+23i)4 (23+12i)4 |
674 | 7+25i 25+7i |
(1+i)·(16+9i) −i·(1+i)·(9+16i) |
16 16 |
627816−1209600i 627816+1209600i |
(7+25i)8 (25+7i)8 |
676 | 10+24i 24+10i 26 |
−i·(1+i)2·(3+2i)2 −(1+i)2·(2+3i)2 −(1+i)2·(2+3i)·(3+2i) |
36 36 48 |
−18564−1478880i −18564+1478880i 1472848 |
(10+24i)18 −(24+10i)18 2624 |
677 | 1+26i 26+i |
просте просте |
8 8 |
1811688−280800i 1811688+280800i |
(1+26i)4 (26+i)4 |
680 | 14+22i 22+14i 2+26i 26+2i |
−(1+i)3·(1+4i)·(2+i) −(1+i)3·(1+2i)·(4+i) −i·(1+i)3·(2+i)·(4+i) i·(1+i)3·(1+2i)·(1+4i) |
64 64 64 64 |
−976752−1086912i −976752+1086912i 1373328−499392i 1373328+499392i |
(14+22i)32 (22+14i)32 (2+26i)32 (26+2i)32 |
685 | 18+19i 19+18i 3+26i 26+3i |
(2+i)·(11+4i) −i·(1+2i)·(4+11i) (1+2i)·(11+4i) −i·(2+i)·(4+11i) |
16 16 16 16 |
−1852848−128448i −1852848+128448i 1695312−758592i 1695312+758592i |
(18+19i)8 (19+18i)8 (3+26i)8 (26+3i)8 |
689 | 17+20i 20+17i 8+25i 25+8i |
(3+2i)·(7+2i) −i·(2+3i)·(2+7i) (2+3i)·(7+2i) −i·(2+7i)·(3+2i) |
16 16 16 16 |
−1795824−593280i −1795824+593280i 623376−1785600i 623376+1785600i |
(17+20i)8 (20+17i)8 (8+25i)8 (25+8i)8 |
692 | 4+26i 26+4i |
−i·(1+i)2·(2+13i) −i·(1+i)2·(13+2i) |
24 24 |
1275144−892320i 1275144+892320i |
(4+26i)12 (26+4i)12 |
697 | 16+21i 21+16i 11+24i 24+11i |
(4+i)·(5+4i) −i·(1+4i)·(4+5i) (4+i)·(4+5i) −i·(1+4i)·(5+4i) |
16 16 16 16 |
−1674864−990720i −1674864+990720i −292464−1923840i −292464+1923840i |
(16+21i)8 (21+16i)8 (11+24i)8 (24+11i)8 |
698 | 13+23i 23+13i |
(1+i)·(18+5i) −i·(1+i)·(5+18i) |
16 16 |
−684024−1291680i −684024+1291680i |
(13+23i)8 (23+13i)8 |
701 | 5+26i 26+5i |
просте просте |
8 8 |
1424808−1354080i 1424808+1354080i |
(5+26i)4 (26+5i)4 |
706 | 9+25i 25+9i |
(1+i)·(17+8i) −i·(1+i)·(8+17i) |
16 16 |
280296−1468800i 280296+1468800i |
(9+25i)8 (25+9i)8 |
709 | 15+22i 22+15i |
просте просте |
8 8 |
−1474072−1367520i −1474072+1367520i |
(15+22i)4 (22+15i)4 |
712 | 6+26i 26+6i |
−i·(1+i)3·(8+5i) −(1+i)3·(5+8i) |
32 32 |
995112−1272960i 995112+1272960i |
(6+26i)16 (26+6i)16 |
720 | 12+24i 24+12i |
−(1+i)4·(1+2i)·3 −(1+i)4·(2+i)·3 |
80 80 |
−403440−1613760i −403440+1613760i |
(12+24i)40 (24+12i)40 |
722 | 19+19i | (1+i)·19 | 16 | −1563864 | (19+19i)8 |
724 | 18+20i 20+18i |
−i·(1+i)2·(9+10i) −i·(1+i)2·(10+9i) |
24 24 |
−1665976−355680i −1665976+355680i |
(18+20i)12 (20+18i)12 |
725 | 14+23i 23+14i 10+25i 25+10i 7+26i 26+7i |
−i·(1+2i)2·(5+2i) −i·(2+i)2·(2+5i) −i·(1+2i)·(2+i)·(2+5i) −i·(1+2i)·(2+i)·(5+2i) (2+i)2·(5+2i) −(1+2i)2·(2+5i) |
24 24 32 32 24 24 |
−1137864−1738464i −1137864+1738464i 102816−2056320i 102816+2056320i 958776−1843296i 958776+1843296i |
(14+23i)12 (23+14i)12 (10+25i)16 (25+10i)16 (7+26i)12 (26+7i)12 |
729 | 27 | 33 | 16 | 2152336 | 278 |
730 | 17+21i 21+17i 1+27i 27+i |
−i·(1+i)·(2+i)·(3+8i) −i·(1+i)·(1+2i)·(8+3i) −i·(1+i)·(1+2i)·(3+8i) −i·(1+i)·(2+i)·(8+3i) |
32 32 32 32 |
−1468656−588096i −1468656+588096i 1572624−172224i 1572624+172224i |
(17+21i)16 (21+17i)16 (1+27i)16 (27+i)16 |
733 | 2+27i 27+2i |
просте просте |
8 8 |
2055848−626400i 2055848+626400i |
(2+27i)4 (27+2i)4 |
738 | 3+27i 27+3i |
(1+i)·3·(5+4i) −i·(1+i)·3·(4+5i) |
32 32 |
1493712−708480i 1493712+708480i |
(3+27i)16 (27+3i)16 |
740 | 16+22i 22+16i 8+26i 26+8i |
−(1+i)2·(1+2i)·(1+6i) −i·(1+i)2·(2+i)·(6+i) −i·(1+i)2·(1+2i)·(6+i) −(1+i)2·(1+6i)·(2+i) |
48 48 48 48 |
−1385904−1088256i −1385904+1088256i 710736−1612416i 710736+1612416i |
(16+22i)24 (22+16i)24 (8+26i)24 (26+8i)24 |
745 | 13+24i 24+13i 4+27i 27+4i |
(2+i)·(10+7i) −i·(1+2i)·(7+10i) (2+i)·(7+10i) −i·(1+2i)·(10+7i) |
16 16 16 16 |
−962928−1974528i −962928+1974528i 1778832−1289088i 1778832+1289088i |
(13+24i)8 (24+13i)8 (4+27i)8 (27+4i)8 |
746 | 11+25i 25+11i |
(1+i)·(18+7i) −i·(1+i)·(7+18i) |
16 16 |
−145464−1663200i −145464+1663200i |
(11+25i)8 (25+11i)8 |
754 | 15+23i 23+15i 5+27i 27+5i |
−i·(1+i)·(2+5i)·(3+2i) −i·(1+i)·(2+3i)·(5+2i) −i·(1+i)·(2+3i)·(2+5i) −i·(1+i)·(3+2i)·(5+2i) |
32 32 32 32 |
−1150128−1249920i −1150128+1249920i 1269072−1128960i 1269072+1128960i |
(15+23i)16 (23+15i)16 (5+27i)16 (27+5i)16 |
757 | 9+26i 26+9i |
просте просте |
8 8 |
540008−2227680i 540008+2227680i |
(9+26i)4 (26+9i)4 |
761 | 19+20i 20+19i |
просте просте |
8 8 |
−2304312−237120i −2304312+237120i |
(19+20i)4 (20+19i)4 |
765 | 18+21i 21+18i 6+27i 27+6i |
−i·(1+2i)·(1+4i)·3 (2+i)·3·(4+i) (1+2i)·3·(4+i) −i·(1+4i)·(2+i)·3 |
32 32 32 32 |
−2208096−802944i −2208096+802944i 1570464−1747584i 1570464+1747584i |
(18+21i)16 (21+18i)16 (6+27i)16 (27+6i)16 |
769 | 12+25i 25+12i |
просте просте |
8 8 |
−514552−2308800i −514552+2308800i |
(12+25i)4 (25+12i)4 |
772 | 14+24i 24+14i |
−i·(1+i)2·(7+12i) −i·(1+i)2·(12+7i) |
24 24 |
−998296−1659840i −998296+1659840i |
(14+24i)12 (24+14i)12 |
773 | 17+22i 22+17i |
просте просте |
8 8 |
−2085912−1166880i −2085912+1166880i |
(17+22i)4 (22+17i)4 |
776 | 10+26i 26+10i |
−i·(1+i)3·(9+4i) −(1+i)3·(4+9i) |
32 32 |
195432−1909440i 195432+1909440i |
(10+26i)16 (26+10i)16 |
778 | 7+27i 27+7i |
(1+i)·(17+10i) −i·(1+i)·(10+17i) |
16 16 |
958536−1542240i 958536+1542240i |
(7+27i)8 (27+7i)8 |
784 | 28 | −(1+i)4·7 | 40 | 1969640 | 2820 |
785 | 16+23i 23+16i 1+28i 28+i |
(2+i)·(11+6i) −i·(1+2i)·(6+11i) (2+i)·(6+11i) −i·(1+2i)·(11+6i) |
16 16 16 16 |
−1909488−1517568i −1909488+1517568i 2398992−440448i 2398992+440448i |
(16+23i)8 (23+16i)8 (1+28i)8 (28+i)8 |
788 | 2+28i 28+2i |
−i·(1+i)2·(1+14i) −i·(1+i)2·(14+i) |
24 24 |
1936584−567840i 1936584+567840i |
(2+28i)12 (28+2i)12 |
793 | 8+27i 27+8i 3+28i 28+3i |
(3+2i)·(6+5i) −i·(2+3i)·(5+6i) (3+2i)·(5+6i) −i·(2+3i)·(6+5i) |
16 16 16 16 |
1008016−2292480i 1008016+2292480i 2275216−1046400i 2275216+1046400i |
(8+27i)8 (27+8i)8 (3+28i)8 (28+3i)8 |
794 | 13+25i 25+13i |
(1+i)·(19+6i) −i·(1+i)·(6+19i) |
16 16 |
−643704−1778400i −643704+1778400i |
(13+25i)8 (25+13i)8 |
797 | 11+26i 26+11i |
просте просте |
8 8 |
−76632−2539680i −76632+2539680i |
(11+26i)4 (26+11i)4 |
800 | 20+20i 4+28i 28+4i |
i·(1+i)5·(1+2i)·(2+i) i·(1+i)5·(1+2i)2 i·(1+i)5·(2+i)2 |
96 72 72 |
−2004912 1746108−1022112i 1746108+1022112i |
(20+20i)48 (4+28i)36 (28+4i)36 |
801 | 15+24i 24+15i |
3·(5+8i) 3·(8+5i) |
16 16 |
−1599984−2046720i −1599984+2046720i |
(15+24i)8 (24+15i)8 |
802 | 19+21i 21+19i |
(1+i)·(20+i) −i·(1+i)·(1+20i) |
16 16 |
−1891224−383040i −1891224+383040i |
(19+21i)8 (21+19i)8 |
808 | 18+22i 22+18i |
−i·(1+i)3·(10+i) −(1+i)3·(1+10i) |
32 32 |
−1918008−807840i −1918008+807840i |
(18+22i)16 (22+18i)16 |
809 | 5+28i 28+5i |
просте просте |
8 8 |
1990728−1700160i 1990728+1700160i |
(5+28i)4 (28+5i)4 |
810 | 9+27i 27+9i |
(1+i)·(2+i)·32 −i·(1+i)·(1+2i)·32 |
48 48 |
478296−1913184i 478296+1913184i |
(9+27i)24 (27+9i)24 |
818 | 17+23i 23+17i |
(1+i)·(20+3i) −i·(1+i)·(3+20i) |
16 16 |
−1661784−1126080i −1661784+1126080i |
(17+23i)8 (23+17i)8 |
820 | 12+26i 26+12i 6+28i 28+6i |
−i·(1+i)2·(2+i)·(5+4i) −(1+i)2·(1+2i)·(4+5i) −i·(1+i)2·(2+i)·(4+5i) −(1+i)2·(1+2i)·(5+4i) |
48 48 48 48 |
−424944−2119104i −424944+2119104i 1372176−1669824i 1372176+1669824i |
(12+26i)24 (26+12i)24 (6+28i)24 (28+6i)24 |
821 | 14+25i 25+14i |
просте просте |
8 8 |
−1223832−2402400i −1223832+2402400i |
(14+25i)4 (25+14i)4 |
829 | 10+27i 27+10i |
просте просте |
8 8 |
416168−2717280i 416168+2717280i |
(10+27i)4 (27+10i)4 |
832 | 16+24i 24+16i |
i·(1+i)6·(2+3i) i·(1+i)6·(3+2i) |
56 56 |
−1546744−1572960i −1546744+1572960i |
(16+24i)28 (24+16i)28 |
833 | 7+28i 28+7i |
(1+4i)·7 (4+i)·7 |
16 16 |
1556496−2305920i 1556496+2305920i |
(7+28i)8 (28+7i)8 |
841 | 20+21i 21+20i 29 |
−i·(2+5i)2 (5+2i)2 −i·(2+5i)·(5+2i) |
12 12 16 |
−2815508−278880i −2815508+278880i 2829456 |
(20+21i)6 −(21+20i)6 298 |
842 | 1+29i 29+i |
(1+i)·(15+14i) −i·(1+i)·(14+15i) |
16 16 |
2106696−292320i 2106696+292320i |
(1+29i)8 (29+i)8 |
845 | 19+22i 22+19i 13+26i 26+13i 2+29i 29+2i |
−i·(2+i)·(2+3i)2 −i·(1+2i)·(3+2i)2 −i·(1+2i)·(2+3i)·(3+2i) −i·(2+i)·(2+3i)·(3+2i) −i·(1+2i)·(2+3i)2 −i·(2+i)·(3+2i)2 |
24 24 32 32 24 24 |
−2721672−716832i −2721672+716832i −679776−2719104i −679776+2719104i 2738808−648288i 2738808+648288i |
(19+22i)12 (22+19i)12 (13+26i)16 (26+13i)16 (2+29i)12 (29+2i)12 |
848 | 8+28i 28+8i |
−(1+i)4·(2+7i) −(1+i)4·(7+2i) |
40 40 |
1018440−2066400i 1018440+2066400i |
(8+28i)20 (28+8i)20 |
850 | 15+25i 25+15i 11+27i 27+11i 3+29i 29+3i |
−i·(1+i)·(1+2i)·(2+i)·(4+i) −(1+i)·(1+2i)·(1+4i)·(2+i) −(1+i)·(1+2i)2·(1+4i) −i·(1+i)·(2+i)2·(4+i) −i·(1+i)·(1+4i)·(2+i)2 −(1+i)·(1+2i)2·(4+i) |
64 64 48 48 48 48 |
−1189728−1762560i −1189728+1762560i 137592−2141568i 137592+2141568i 1934712−928512i 1934712+928512i |
(15+25i)32 (25+15i)32 (11+27i)24 (27+11i)24 (3+29i)24 (29+3i)24 |
853 | 18+23i 23+18i |
просте просте |
8 8 |
−2574232−1357920i −2574232+1357920i |
(18+23i)4 (23+18i)4 |
857 | 4+29i 29+4i |
просте просте |
8 8 |
2507208−1531200i 2507208+1531200i |
(4+29i)4 (29+4i)4 |
865 | 17+24i 24+17i 9+28i 28+9i |
−i·(1+2i)·(2+13i) (2+i)·(13+2i) (1+2i)·(13+2i) −i·(2+i)·(2+13i) |
16 16 16 16 |
−2235888−1942272i −2235888+1942272i 1058832−2765952i 1058832+2765952i |
(17+24i)8 (24+17i)8 (9+28i)8 (28+9i)8 |
866 | 5+29i 29+5i |
(1+i)·(17+12i) −i·(1+i)·(12+17i) |
16 16 |
1745256−1419840i 1745256+1419840i |
(5+29i)8 (29+5i)8 |
872 | 14+26i 26+14i |
−i·(1+i)3·(10+3i) −(1+i)3·(3+10i) |
32 32 |
−955128−2227680i −955128+2227680i |
(14+26i)16 (26+14i)16 |
873 | 12+27i 27+12i |
3·(4+9i) 3·(9+4i) |
16 16 |
−314224−3070080i −314224+3070080i |
(12+27i)8 (27+12i)8 |
877 | 6+29i 29+6i |
просте просте |
8 8 |
2107688−2241120i 2107688+2241120i |
(6+29i)4 (29+6i)4 |
881 | 16+25i 25+16i |
просте просте |
8 8 |
−2015352−2361600i −2015352+2361600i |
(16+25i)4 (25+16i)4 |
882 | 21+21i | (1+i)·3·7 | 32 | −2363568 | (21+21i)16 |
884 | 20+22i 22+20i 10+28i 28+10i |
−i·(1+i)2·(3+2i)·(4+i) −(1+i)2·(1+4i)·(2+3i) −i·(1+i)2·(2+3i)·(4+i) −(1+i)2·(1+4i)·(3+2i) |
48 48 48 48 |
−2491632−461760i −2491632+461760i 503568−2483520i 503568+2483520i |
(20+22i)24 (22+20i)24 (10+28i)24 (28+10i)24 |
890 | 19+23i 23+19i 7+29i 29+7i |
−i·(1+i)·(1+2i)·(8+5i) −i·(1+i)·(2+i)·(5+8i) −i·(1+i)·(1+2i)·(5+8i) −i·(1+i)·(2+i)·(8+5i) |
32 32 32 32 |
−2148336−955584i −2148336+955584i 1445904−1854144i 1445904+1854144i |
(19+23i)16 (23+19i)16 (7+29i)16 (29+7i)16 |
898 | 13+27i 27+13i |
(1+i)·(20+7i) −i·(1+i)·(7+20i) |
16 16 |
−537624−2358720i −537624+2358720i |
(13+27i)8 (27+13i)8 |
900 | 18+24i 24+18i 30 |
−i·(1+i)2·(2+i)2·3 −(1+i)2·(1+2i)2·3 −(1+i)2·(1+2i)·(2+i)·3 |
72 72 96 |
−2272712−1330368i −2272712+1330368i 2609568 |
(18+24i)36 (24+18i)36 3048 |
901 | 15+26i 26+15i 1+30i 30+i |
−i·(1+4i)·(2+7i) (4+i)·(7+2i) (2+7i)·(4+i) −i·(1+4i)·(7+2i) |
16 16 16 16 |
−1614384−2825280i −1614384+2825280i 3224016−440640i 3224016+440640i |
(15+26i)8 (26+15i)8 (1+30i)8 (30+i)8 |
904 | 2+30i 30+2i |
−i·(1+i)3·(8+7i) −(1+i)3·(7+8i) |
32 32 |
2512872−685440i 2512872+685440i |
(2+30i)16 (30+2i)16 |
905 | 11+28i 28+11i 8+29i 29+8i |
(2+i)·(10+9i) −i·(1+2i)·(9+10i) (2+i)·(9+10i) −i·(1+2i)·(10+9i) |
16 16 16 16 |
112272−3239808i 112272+3239808i 1425552−2911488i 1425552+2911488i |
(11+28i)8 (28+11i)8 (8+29i)8 (29+8i)8 |
909 | 3+30i 30+3i |
(1+10i)·3 3·(10+i) |
16 16 |
3083856−1298880i 3083856+1298880i |
(3+30i)8 (30+3i)8 |
914 | 17+25i 25+17i |
(1+i)·(21+4i) −i·(1+i)·(4+21i) |
16 16 |
−1828824−1713600i −1828824+1713600i |
(17+25i)8 (25+17i)8 |
916 | 4+30i 30+4i |
−i·(1+i)2·(2+15i) −i·(1+i)2·(15+2i) |
24 24 |
2352584−1379040i 2352584+1379040i |
(4+30i)12 (30+4i)12 |
922 | 9+29i 29+9i |
(1+i)·(19+10i) −i·(1+i)·(10+19i) |
16 16 |
915336−2380320i 915336+2380320i |
(9+29i)8 (29+9i)8 |
925 | 21+22i 22+21i 14+27i 27+14i 5+30i 30+5i |
−i·(1+2i)2·(6+i) −i·(1+6i)·(2+i)2 (2+i)2·(6+i) −(1+2i)2·(1+6i) −i·(1+2i)·(1+6i)·(2+i) −i·(1+2i)·(2+i)·(6+i) |
24 24 24 24 32 32 |
−3355144−440544i −3355144+440544i −1258504−3141216i −1258504+3141216i 2648736−2056320i 2648736+2056320i |
(21+22i)12 (22+21i)12 (14+27i)12 (27+14i)12 (5+30i)16 (30+5i)16 |
928 | 12+28i 28+12i |
−(1+i)5·(5+2i) i·(1+i)5·(2+5i) |
48 48 |
−137592−2751840i −137592+2751840i |
(12+28i)24 (28+12i)24 |
929 | 20+23i 23+20i |
просте просте |
8 8 |
−3319032−949440i −3319032+949440i |
(20+23i)4 (23+20i)4 |
932 | 16+26i 26+16i |
−i·(1+i)2·(8+13i) −i·(1+i)2·(13+8i) |
24 24 |
−1676376−2271360i −1676376+2271360i |
(16+26i)12 (26+16i)12 |
936 | 6+30i 30+6i |
−i·(1+i)3·3·(3+2i) −(1+i)3·(2+3i)·3 |
64 64 |
1973904−2007360i 1973904+2007360i |
(6+30i)32 (30+6i)32 |
937 | 19+24i 24+19i |
просте просте |
8 8 |
−3142072−1568640i −3142072+1568640i |
(19+24i)4 (24+19i)4 |
941 | 10+29i 29+10i |
просте просте |
8 8 |
850728−3438240i 850728+3438240i |
(10+29i)4 (29+10i)4 |
949 | 18+25i 25+18i 7+30i 30+7i |
(3+2i)·(8+3i) −i·(2+3i)·(3+8i) (2+3i)·(8+3i) −i·(3+2i)·(3+8i) |
16 16 16 16 |
−2875184−2145600i −2875184+2145600i 2193616−2838720i 2193616+2838720i |
(18+25i)8 (25+18i)8 (7+30i)8 (30+7i)8 |
953 | 13+28i 28+13i |
просте просте |
8 8 |
−607032−3581760i −607032+3581760i |
(13+28i)4 (28+13i)4 |
954 | 15+27i 27+15i |
(1+i)·3·(7+2i) −i·(1+i)·(2+7i)·3 |
32 32 |
−1222128−2479680i −1222128+2479680i |
(15+27i)16 (27+15i)16 |
961 | 31 | просте | 8 | 3694088 | 314 |
962 | 11+29i 29+11i 1+31i 31+i |
−i·(1+i)·(1+6i)·(3+2i) −i·(1+i)·(2+3i)·(6+i) (1+i)·(3+2i)·(6+i) −(1+i)·(1+6i)·(2+3i) |
32 32 32 32 |
322512−2747520i 322512+2747520i 2741712−368640i 2741712+368640i |
(11+29i)16 (29+11i)16 (1+31i)16 (31+i)16 |
964 | 8+30i 30+8i |
−i·(1+i)2·(4+15i) −i·(1+i)2·(15+4i) |
24 24 |
1522664−2608320i 1522664+2608320i |
(8+30i)12 (30+8i)12 |
965 | 17+26i 26+17i 2+31i 31+2i |
(2+i)·(12+7i) −i·(1+2i)·(7+12i) (2+i)·(7+12i) −i·(1+2i)·(12+7i) |
16 16 16 16 |
−2603568−2609088i −2603568+2609088i 3525072−1076928i 3525072+1076928i |
(17+26i)8 (26+17i)8 (2+31i)8 (31+2i)8 |
968 | 22+22i | −i·(1+i)3·11 | 32 | −2986968 | (22+22i)16 |
970 | 21+23i 23+21i 3+31i 31+3i |
−i·(1+i)·(2+i)·(4+9i) −i·(1+i)·(1+2i)·(9+4i) −i·(1+i)·(1+2i)·(4+9i) −i·(1+i)·(2+i)·(9+4i) |
32 32 32 32 |
−2764656−398016i −2764656+398016i 2626704−949824i 2626704+949824i |
(21+23i)16 (23+21i)16 (3+31i)16 (31+3i)16 |
976 | 20+24i 24+20i |
−(1+i)4·(5+6i) −(1+i)4·(6+5i) |
40 40 |
−2851960−1082400i −2851960+1082400i |
(20+24i)20 (24+20i)20 |
977 | 4+31i 31+4i |
просте просте |
8 8 |
3326088−1874880i 3326088+1874880i |
(4+31i)4 (31+4i)4 |
980 | 14+28i 28+14i |
−i·(1+i)2·(1+2i)·7 −i·(1+i)2·(2+i)·7 |
48 48 |
−749424−2997696i −749424+2997696i |
(14+28i)24 (28+14i)24 |
981 | 9+30i 30+9i |
3·(3+10i) 3·(10+3i) |
16 16 |
1535696−3581760i 1535696+3581760i |
(9+30i)8 (30+9i)8 |
985 | 16+27i 27+16i 12+29i 29+12i |
−i·(1+2i)·(1+14i) (2+i)·(14+i) (1+2i)·(14+i) −i·(1+14i)·(2+i) |
16 16 16 16 |
−1942128−3313152i −1942128+3313152i 154512−3837312i 154512+3837312i |
(16+27i)8 (27+16i)8 (12+29i)8 (29+12i)8 |
986 | 19+25i 25+19i 5+31i 31+5i |
−i·(1+i)·(1+4i)·(5+2i) −i·(1+i)·(2+5i)·(4+i) (1+i)·(4+i)·(5+2i) −(1+i)·(1+4i)·(2+5i) |
32 32 32 32 |
−2500848−1512000i −2500848+1512000i 2337552−1753920i 2337552+1753920i |
(19+25i)16 (25+19i)16 (5+31i)16 (31+5i)16 |
997 | 6+31i 31+6i |
просте просте |
8 8 |
2868968−2752800i 2868968+2752800i |
(6+31i)4 (31+6i)4 |
1000 | 18+26i 26+18i 10+30i 30+10i |
i·(1+i)3·(1+2i)3 −(1+i)3·(2+i)3 −(1+i)3·(1+2i)·(2+i)2 i·(1+i)3·(1+2i)2·(2+i) |
64 64 96 96 |
−2288880−2164032i −2288880+2164032i 875160−2991456i 875160+2991456i |
(18+26i)32 (26+18i)32 (10+30i)48 (30+10i)48 |
- Ґаусові числа
- Таблиця дільників
- Розклади ґаусових чисел на прості множники (таблиця)
- Функція дільників
- ↑ Hardy, G. H.; Wright, E. M. (1968). An introduction to the theory of numbers (Англійською мовою) . Oxford University Press. с. 182—183.
- Hardy, G. H.; Wright, E. M. (1968). An introduction to the theory of numbers (вид. 4th).
- Stillwell, John (2003). Elements of Number Theory (вид. 4). Science+Business Media New York. ISBN 978-1-4419-3066-8.
- Willerging M. F. Divisibility and factorization of Gaussian integers // The Mathematics Teacher. — 1966. — Т. 59, вип. 7. — С. 634-637.