Перейти до вмісту

Теорема Банаха про замкнений графік

Матеріал з Вікіпедії — вільної енциклопедії.

Формулювання теореми

[ред. | ред. код]

Нехай X, Y — банахові простори над одним і тим же полем, L — підпростір простору X. Для того, щоб лінійний оператор був неперервним, необхідно і достатньо, щоб його графік був замкнений в декартовому добутку (якщо його розглядати як нормований простір).

Пояснення теореми

[ред. | ред. код]

Теорема про замкнений графік зокрема говорить, що графік неперервної функції, означеної на замкненій множині, є множиною замкненою.

Література

[ред. | ред. код]