Перейти до вмісту

Теорема Тітце про продовження

Матеріал з Вікіпедії — вільної енциклопедії.

В топології, Теорема Тітце про продовження стверджує, що якщо X є нормальним топологічним простором і

є неперервною функцією із замкнутої підмножини A простору X у множину дійсних чисел із стандартною топологією, тоді існує неперервна функція

для якої F(a) = f(a) для всіх . F називається неперервним продовженням функції f.

Теорема узагальнює лему Урисона і має широке застосування, оскільки всі метричні простори і всі компактні Гаусдорфові простори є нормальними.

Див. також

[ред. | ред. код]

Посилання

[ред. | ред. код]