Шараф ад-Дін ат-Тусі
Шараф ад-Дін ат-Тусі | |
---|---|
араб. شرف الدين المظفر بن محمد الطوسي перс. شرفالدین مظفر بن محمد بن مظفر توسی | |
Ім'я при народженні | перс. شرف الدین مظفر بن محمد بن مظفر طوسی[1] |
Народився | 1135[2] Тус, Аббасидський халіфат[2] |
Помер | 1213[2] Багдад, Аббасидський халіфат |
Діяльність | математик, астроном, астролог |
Відомі учні | Kamal al-Din bin Younisd[3] |
Шараф ад-Дін ат-Тусі (1135-1213) — перський математик та астроном. Народився в Тусі, працював у Хамадані в епоху Золотого віку ісламу. Вчитель Камал ад-Діна ібн Юніса.[4][4]
Ймовірно, Шараф ад-Дін ат-Тусі народився в Тусі (Іран) . Про його життя відомо небагато, крім того, що можна знайти в біографіях інших вчених і того, що більшість математиків сьогодні можуть простежити свій родовід від нього.
Близько 1165 року він переїхав до Дамаска і викладав там математику. Потім він прожив три роки в Алеппо, перш ніж переїхати до Мосула, де зустрів свого найвідомішого учня Камаля ад-Діна ібн Юнуса (1156—1242). Цей Камаль ад-Дін пізніше став учителем іншого відомого математика з Туса, Насір ад-Діна ат-Тусі .
За словами Ібн Абі Усаібіа, Шараф ад-Дін був «видатним у геометрії та математичних науках, не маючи рівних у свій час».[5][6]
Вважається, що Ат-Тусі запропонував ідею функції, однак, оскільки його підхід не був дуже чітким, перехід Алгебри до динамічної функції був зроблений через 5 століть після нього Готфрідом Лейбніцем[7][8]. Шараф ад-Дін використав те, що пізніше буде відоме як " метод Руффіні — Горнера " для чисельного наближення кореня кубічного рівняння . Він також розробив новий метод для визначення умов, за яких певні типи кубічних рівнянь матимуть два, один або жодних розв'язків[9]. Рівняння, про які йде мова, можна записати, використовуючи сучасні позначення, у формі f (x) = c , де f (x) — кубічний поліном, у якому коефіцієнт при кубічному члені x 3 дорівнює −1 , а c додатне. Мусульманські математики того часу розділили потенційно розв'язні випадки цих рівнянь на п'ять різних типів, визначених знаками інших коефіцієнтів f (x) .Для кожного з цих п'яти типів ад-Тусі записав вираз m для точки, де функція f (x) досягла свого максимуму, і дав геометричний доказ того, що f(x) < f (m) для будь-якого позитивного x , відмінного від m . Потім він дійшов висновку, що рівняння матиме два розв'язки, якщо c < f (m), один розв'язок, якщо c = f (m), або жодного, якщо f (m) < c .
Ад-Тусі не вказав, як він відкрив вирази m для максимумів функцій f (x) . Деякі вчені дійшли висновку, що аль-Тусі отримав свої вирази для цих максимумів, «систематично» взявши похідну функції f (x) і встановивши її рівною нулю. Однак цей висновок був оскаржений іншими, які вказували на те, що ат-Тусі ніде не записав вираз для похідної, і запропонували інші вірогідні методи, за допомогою яких він міг би виявити свої вирази для максимумів.
Величини D = f (m) − c , які можна отримати з умов ат-Тусі для чисел коренів кубічних рівнянь шляхом віднімання однієї частини цих умов від іншої, сьогодні називають дискримінантом кубічних поліномів, отриманих відніманням одного сторони відповідних кубічних рівнянь від іншої. Хоча ат-Тусі завжди записує ці умови у формах c < f (m) , c = f (m) або f (m) < c , а не відповідні форми D > 0 , D = 0 або D < 0 , Тим не менше Рошді Рашед вважає, що його відкриття цих умов продемонструвало розуміння важливості дискримінанта для дослідження розв'язків кубічних рівнянь.
Шараф ад-Дін проаналізував рівняння x 3 + d = b ⋅ x 2 у формі x 2 ⋅ (b — x) = d , заявивши, що ліва частина повинна принаймні дорівнювати значенню d , щоб рівняння мало рішення. Потім він визначив максимальне значення цього виразу. Значення менше d означає відсутність позитивного рішення; значення, що дорівнює d, відповідає одному розв'язку, тоді як значення, більше d, відповідає двом розв'язкам. Аналіз цього рівняння, зроблений Шарафом ад-Діном, був помітним досягненням у Ісламській математиці, але його робота не знайшла подальшого розвитку в той час ні в мусульманському світі, ні в Європі.
Рошді Рашед описав «Трактат про рівняння» Шарафа ад-Діна ат-Тусі як початок алгебраїчної геометрії . Це було піддано критиці Джеффрі Оуксом, який стверджував, що Ат-Тусі не вивчав криві за допомогою рівнянь, а скоріше рівняння за допомогою кривих (так само, як аль-Хайям робив до нього), і що дослідження кривих за допомогою Рівняння виникло у Декарта в сімнадцятому столітті.
Шараф ад-Дін винайшов лінійну астролябію, яку іноді називають «посохом Тусі». Хоча його було легше побудувати і він був відомий в Аль-Андалусі, він не набув великої популярності.
Астероїд головного поясу 7058 Al-Ṭūsī , відкритий Генрі Е. Холтом в Паломарській обсерваторії в 1990 році, був названий на його честь.
- ↑ VIAF — [Dublin, Ohio]: OCLC, 2003.
- ↑ а б в Архів історії математики Мактьютор — 1994.
- ↑ Математичний генеалогічний проєкт — 1997.
- ↑ а б Berggren, J. L.; Al-Tūsī, Sharaf Al-Dīn; Rashed, Roshdi; Al-Tusi, Sharaf Al-Din (1990-04). Innovation and Tradition in Sharaf al-Dīn al-Ṭūsī's Muʿādalāt. Journal of the American Oriental Society. Т. 110, № 2. с. 304. doi:10.2307/604533. ISSN 0003-0279. Процитовано 15 квітня 2023.
- ↑ Farès, Nicolas (1995-09). Le calcul du maximum et la “dérivée” selon Sharaf al-Dīn al-Ṭūsī. Arabic Sciences and Philosophy. Т. 5, № 2. с. 219—237. doi:10.1017/s0957423900002034. ISSN 0957-4239. Процитовано 15 квітня 2023.
- ↑ Hogendijk, Jan P. Sharaf al‐Dīn al‐ṭūsī. Encyclopaedia of the History of Science, Technology, and Medicine in Non-Western Cultures. Dordrecht: Springer Netherlands. с. 2002—2003.
- ↑ Rashed, Roshdi (1994). The Development of Arabic Mathematics: Between Arithmetic and Algebra. Boston Studies in the Philosophy of Science. doi:10.1007/978-94-017-3274-1. ISSN 0068-0346. Процитовано 15 квітня 2023.
- ↑ Nasehpour, Peyman (2018-03). Pseudocomplementation and minimal prime ideals in semirings. Algebra universalis. Т. 79, № 1. doi:10.1007/s00012-018-0496-x. ISSN 0002-5240. Процитовано 15 квітня 2023.
- ↑ Huestis, Stephen P. (1993-11). Non-negative solutions and positive resolving kernels with negative solution averages in linear inverse theory. Geophysical Journal International. Т. 115, № 2. с. 601—603. doi:10.1111/j.1365-246x.1993.tb01210.x. ISSN 0956-540X. Процитовано 15 квітня 2023.