Безлад (перестановка)
Таблиця значень | |||
---|---|---|---|
Перестановка, | Безлад, | ||
0 | 1 =1×100 | 1 =1×100 | = 1 |
1 | 1 =1×100 | 0 | = 0 |
2 | 2 =2×100 | 1 =1×100 | = 0.5 |
3 | 6 =6×100 | 2 =2×100 | ≈0.33333 33333 |
4 | 24 =2.4×101 | 9 =9×100 | = 0.375 |
5 | 120 =1.20×102 | 44 =4.4×101 | ≈0.36666 66667 |
6 | 720 =7.20×102 | 265 =2.65×102 | ≈0.36805 55556 |
7 | 5 040 ≈5.04×103 | 1 854 ≈1.85×103 | ≈0.36785 71429 |
8 | 40 320 ≈4.03×104 | 14 833 ≈1.48×104 | ≈0.36788 19444 |
9 | 362 880 ≈3.63×105 | 133 496 ≈1.33×105 | ≈0.36787 91887 |
10 | 3 628 800 ≈3.63×106 | 1 334 961 ≈1.33×106 | ≈0.36787 94643 |
11 | 39 916 800 ≈3.99×107 | 14 684 570 ≈1.47×107 | ≈0.36787 94392 |
12 | 479 001 600 ≈4.79×108 | 176 214 841 ≈1.76×108 | ≈0.36787 94413 |
13 | 6 227 020 800 ≈6.23×109 | 2 290 792 932 ≈2.29×109 | ≈0.36787 94412 |
14 | 87 178 291 200 ≈8.72×1010 | 32 071 101 049 ≈3.21×1010 | ≈0.36787 94412 |
15 | 1 307 674 368 000 ≈1.31×1012 | 481 066 515 734 ≈4.81×1011 | ≈0.36787 94412 |
16 | 20 922 789 888 000 ≈2.09×1013 | 7 697 064 251 745 ≈7.70×1012 | ≈0.36787 94412 |
17 | 355 687 428 096 000 ≈3.56×1014 | 130 850 092 279 664 ≈1.31×1014 | ≈0.36787 94412 |
18 | 6 402 373 705 728 000 ≈6.40×1015 | 2 355 301 661 033 953 ≈2.36×1015 | ≈0.36787 94412 |
19 | 121 645 100 408 832 000 ≈1.22×1017 | 44 750 731 559 645 106 ≈4.48×1016 | ≈0.36787 94412 |
20 | 2 432 902 008 176 640 000 ≈2.43×1018 | 895 014 631 192 902 121 ≈8.95×1017 | ≈0.36787 94412 |
21 | 51 090 942 171 709 440 000 ≈5.11×1019 | 18 795 307 255 050 944 540 ≈1.88×1019 | ≈0.36787 94412 |
22 | 1 124 000 727 777 607 680 000 ≈1.12×1021 | 413 496 759 611 120 779 881 ≈4.13×1020 | ≈0.36787 94412 |
23 | 25 852 016 738 884 976 640 000 ≈2.59×1022 | 9 510 425 471 055 777 937 262 ≈9.51×1021 | ≈0.36787 94412 |
24 | 620 448 401 733 239 439 360 000 ≈6.20×1023 | 228 250 211 305 338 670 494 289 ≈2.28×1023 | ≈0.36787 94412 |
25 | 15 511 210 043 330 985 984 000 000 ≈1.55×1025 | 5 706 255 282 633 466 762 357 224 ≈5.71×1024 | ≈0.36787 94412 |
26 | 403 291 461 126 605 635 584 000 000 ≈4.03×1026 | 148 362 637 348 470 135 821 287 825 ≈1.48×1026 | ≈0.36787 94412 |
27 | 10 888 869 450 418 352 160 768 000 000 ≈1.09×1028 | 4 005 791 208 408 693 667 174 771 274 ≈4.01×1027 | ≈0.36787 94412 |
28 | 304 888 344 611 713 860 501 504 000 000 ≈3.05×1029 | 112 162 153 835 443 422 680 893 595 673 ≈1.12×1029 | ≈0.36787 94412 |
29 | 8 841 761 993 739 701 954 543 616 000 000 ≈8.84×1030 | 3 252 702 461 227 859 257 745 914 274 516 ≈3.25×1030 | ≈0.36787 94412 |
30 | 265 252 859 812 191 058 636 308 480 000 000 ≈2.65×1032 | 97 581 073 836 835 777 732 377 428 235 481 ≈9.76×1031 | ≈0.36787 94412 |
В комбінаториці бе́зладом називається перестановка без нерухомих точок, тобто жодний елемент не залишається на початковому місці.
Число безладів множини з n елементів, зазвичай позначається Dn, dn, або !n, і називається «числом безладів» або «числом Монмора». (Ці числа узагальнюються числами, що відповідають числу зустрічей.) Функція субфакторіа́л (не плутайте з факторіалом n!) ставить у відповідність числу n число !n.[1] Не існує стандартного позначення для субфакторіалу. Інколи позначають n¡ замість !n.[2]
Задача підрахунку числа безладів була уперше розглянута П'єром де Монмором[3] у 1708; він розв'язав її у 1713, як це зробив Микола I Бернуллі приблизно в той же час.
Припустимо, що професор дав чотирьом студентам (назвемо їх A, B, C і D) контрольну, а потім запропонував їм перевірити її один у одного. Звісно, жоден студент не повинен перевіряти свою контрольну. Скільки у професора варіантів розподілу контрольних, в яких жодному студенту не дістанеться своя робота? З усіх 24-х перестановок (4!) для повернення робіт, нам підходять тільки 9 безладів:
- BADC, BCDA, BDAC,
- CADB, CDAB, CDBA,
- DABC, DCAB, DCBA.
У будь-який інший перестановці цих 4-х елементів, принаймні один студент отримує свою контрольну на перевірку.
Обчислення кількості безладів є популярною задачею в олімпіадній математиці[ru], яка зустрічається в різних формулюваннях таких як завдання про безлад, завдання про листи, завдання про зустрічі і т. д.
- Якщо листів випадковим чином покласти в різних конвертів, то яка ймовірність, що якийсь лист потрапить в свій конверт?
Відповідь дається виразом
Таким чином, відповідь слабо залежить від кількості листів і конвертів і приблизно дорівнює константі .
Кількість всіх безладів порядку n може бути обчислено за допомогою принципу включення-виключення і дається виразом:
яке називається субфакторіалом числа n.
Кількість безладів задовольняє рекурсивним співвідношенням
і
де і
З огляду на те, що , значення зі збільшенням веде себе як . Більше того, при його можна представити як результат округлення числа .
- ↑ Назва «субфакторіал» походить від William Allen Whitworth; див. Cajori, Florian (2011), A History of Mathematical Notations: Two Volumes in One, Cosimo, Inc., с. 77, ISBN 9781616405717, архів оригіналу за 25 квітня 2016, процитовано 6 червня 2015.
- ↑ Ronald L. Graham, Donald E. Knuth, Oren Patashnik, Concrete Mathematics (1994), Addison-Wesley, Reading MA. ISBN 0-201-55802-5
- ↑ de Montmort, P. R. (1708). Essay d'analyse sur les jeux de hazard. Paris: Jacque Quillau. Seconde Edition, Revue & augmentée de plusieurs Lettres. Paris: Jacque Quillau. 1713.
- Виведення формули кількості безладів трьома способами (англ.)
- В.А. Вишенський, М.О. Перестюк. Комбінаторика: перші кроки. — Кам'янець-Подільський : Аксіома, 2010. — 324 с. — ISBN 978-966-496-136-0.(укр.)
- Р. Стенлі. Перелічувальна комбінаторика. — М. : Мир, 1990. — С. 107-108.
- Baez, John (2003). Let's get deranged! (PDF). Архів оригіналу (PDF) за 30 вересня 2012. Процитовано 6 червня 2015.
- Bogart, Kenneth P. and Doyle, Peter G. (1985). Non-sexist solution of the ménage problem. Архів оригіналу за 20 липня 2008. Процитовано 6 червня 2015.
- Dickau, Robert M. Derangement diagrams. Figures Using Mathematica. Архів оригіналу за 27 червня 2008. Процитовано 6 червня 2015.
- Hassani, Mehdi. Derangements and Applications. Journal of Integer Sequences (JIS), Volume 6, Issue 1, Article 03.1.2, 2003. Архів оригіналу за 4 червня 2008. Процитовано 6 червня 2015.
- Weisstein, Eric W. Безлад(англ.) на сайті Wolfram MathWorld.