Коваріація та кореляція
Частина з циклу Статистика |
Кореляція та коваріація |
---|
Математичні поняття коваріа́ції (англ. covariance) та кореля́ції (англ. correlation) у теорії ймовірностей та статистиці дуже схожі.[1][2] Обидва описують ступінь, до якого дві випадкові величини або набори випадкових величин схильні відхилятися від своїх математичних сподівань подібним чином.
Якщо X та Y — дві випадкові величини з середніми значеннями (математичними сподіваннями) μX та μY і стандартними відхиленнями σX та σY відповідно, то їх коваріація та кореляція такі:
тож
де E — оператор математичного сподівання. Примітно, що кореляція безрозмірнісна, тоді як коваріація має одиниці, отримувані шляхом множення одиниць цих двох величин.
Якщо Y завжди набуває тих же значень, що й X, ми маємо коваріацію змінної з самою собою (тобто ), яку називають дисперсією й частіше позначують через , квадрат стандартного відхилення. Кореляція змінної з самою собою завжди 1 (крім виродженого випадку, коли ці дві дисперсії дорівнюють нулю, оскільки X завжди набуває одного й того ж єдиного значення, і в цьому випадку кореляції не існує, оскільки її обчислення включатиме ділення на 0). Загалом, кореляція між двома змінними дорівнює 1 (або −1), якщо одна з них завжди набуває значення, яке точно задається лінійною функцією іншої з відповідно додатним (або від'ємним) кутовим коефіцієнтом.
Хоча значення теоретичних коваріацій та кореляцій і пов’язано вищезазначеним чином, розподіли ймовірностей ви́біркових оцінок[en] цих величин жодним простим чином не пов’язано, і в загальному випадку їх потрібно розглядати окремо.
За будь-якої кількості випадкових величин, що перевищує 1, ці величини можливо об’єднати у випадковий вектор, чий i-й елемент є i-ю випадковою величиною. Тоді дисперсії та коваріації можливо помістити до коваріаційної матриці, в якій елемент (i, j) є коваріацією між i-ю та j-ю випадковими величинами. Аналогічно, кореляції можливо помістити до кореляційної матриці.
У випадку часового ряду, що є стаціонарним у широкому сенсі, як середні значення, так і дисперсії є сталими в часі (E(Xn+m) = E(Xn) = μX та var(Xn+m) = var(Xn), і так само для змінної Y). У цьому випадку взаємна коваріація та взаємна кореляція є функціями часової різниці:
Якщо Y є тією же змінною, що й X, то наведені вище вирази називають автоковаріацією та автокореляцією:
- Карташов М. В. Імовірність, процеси, статистика. — Київ : ВПЦ Київський університет, 2007. — 504 с.
- Гнеденко Б. В. Курс теории вероятностей. — 6-е изд. — Москва : Наука, 1988. — 446 с.(рос.)
- Гихман И. И., Скороход А. В., Ядренко М. В. Теория вероятностей и математическая статистика. — Київ : Вища школа, 1988. — 436 с.(рос.)
- ↑ Weisstein, Eric W. Covariance(англ.) на сайті Wolfram MathWorld.
- ↑ Weisstein, Eric W. Statistical Correlation(англ.) на сайті Wolfram MathWorld.