Теорема Лохса
В теорії чисел, теорема Лохса — теорема про швидкість збіжності розкладу ланцюгового дробу типового дійсного числа. Доведення теореми було опубліковано Ґуставом Лохсом в 1964 році.[1]
Теорема стверджує, що для практично всіх дійсних чисел в інтервалі (0,1) кількість членів m у розкладі ланцюгового дробу цього числа, необхідних для визначення перших n місць десяткового зображення числа асимптотично поводисться як:
- послідовність A086819 з Онлайн енциклопедії послідовностей цілих чисел, OEIS[2].
Оскільки ця межа лише трохи менша одиниці, що можна інтерпретувати як те, що кожен додатковий термін у розкладі ланцюгового дробу «типового» дійсного числа збільшує точність наближення приблизно на одну десяткову позицію. Десяткова система є останньою позиційною системою запису, для якої кожна цифра містить менше інформації, ніж одна частка (коефіцієнт) ланцюгового дробу; перехід до 11-вої бази (зміна на у рівнянні) робить вищевказане значення більшим одиниці.
![](http://upload.wikimedia.org/wikipedia/commons/thumb/d/d3/Lochs%27_theorem_golden_ratio.svg/400px-Lochs%27_theorem_golden_ratio.svg.png)
Відносно цього ліміту,
- послідовність A062542 з Онлайн енциклопедії послідовностей цілих чисел, OEIS,
є вдвічі більшою за десятковий логарифм сталої Леві.
Яскравим прикладом числа, що не проявляє такої поведінки, є золотий перетин - іноді відоме як «найбільш ірраціональне» число — коефіцієнти ланцюгового дробу якого — всі одиниці, найменші можливі в канонічній формі. У середньому йому потрібно приблизно 2.39 коефіцієнтів ланцюгового дробу на кожну десяткову цифру[3]
- ↑ Lochs, Gustav (1964), Vergleich der Genauigkeit von Dezimalbruch und Kettenbruch, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg (German) , 27: 142—144, doi:10.1007/BF02993063, MR 0162753 (нім.)
- ↑ Weisstein, Eric W. Lochs' Theorem(англ.) на сайті Wolfram MathWorld. (англ.)
- ↑ Cooper, Harold. Continued Fraction Streams. Процитовано 16 лютого 2019. (англ.)