Характеристичний многочлен
Зовнішній вигляд
(Перенаправлено з Характеристичний многочлен матриці)
Характеристичний поліном квадратної матриці розміру — це многочлен степеня від змінної який дорівнює
- , де — одинична матриця порядку .
Скаляр є власним значенням матриці A для власного вектора тоді і тільки тоді коли:
або
Оскільки то повинна бути виродженою, а отже:
- .
- Неважко переконатися, що
- Для матриць елементи яких комутативними є -алгебрами, характеристичний многочлен можна записати як:
- де — многочлени із раціональними коефіцієнтами, що описують залежність елементарних симетричних многочленів від степеневих симетричних многочленів у тотожностях Ньютона (тобто )
- Характеристичні поліноми подібних матриць збігаються:
- Характеристичні поліноми добутку квадратних матриць не залежать від порядку множників:
- Характеристичний поліном від самої матриці дорівнює нульовій матриці (теорема Гамільтона — Келі):
Характеристичним рівнянням (або секулярним рівнянням; така назва пов'язана з тим, що це рівняння зустрічається при дослідженні столітніх збурень планет; з латині: `saeculum' --- століття.) називається рівняння
Корені характеристичного полінома називаються характеристичними числами матриці
Тільки вони є власними значеннями матриці
- Гантмахер Ф. Р. Теорія матриць. — 2024. — 703 с.(укр.)
- Гельфанд І. М. Лекції з лінійної алгебри. — 2025. — 240 с.(укр.)