Перейти до вмісту

Повна категорія

Матеріал з Вікіпедії — вільної енциклопедії.

Категорія називається повною у малому, якщо у ній будь-яка (мала) діаграма має границю. Дуальне поняття — коповна у малому категорія, тобто та, у якій будь-яка мала діаграма має кограницю. Аналогічно визначається кінцева повнота і взагалі α-повнота для будь-якого регулярного кардинала α. З них усіх найбільш використовуваною є повнота у малому, тому категорії, повні у малому, називаються просто повними. Відзначимо, що це не означає існування границь взагалі усіх (не обов'язково малих) діаграм, бо така категорія з необхідністю була б передпорядком.

Категорія, яка є одночасно повною і коповною, називається біповною.

Приклади

[ред. | ред. код]
  • Наступні категорії біповні:
  • Наступні категорії скінченно біповні, але не є повними або коповними:
    • категорія скінченних множин ;
    • категорія скінченновимірних векторних просторів над полем ;
    • категорія скінченних груп ;
  • Взагалі, якщо — категорія моделей деякої алгебраїчної теорії , то повна і коповна, так як вона рефлективна у . Нагадаємо, що алгебраїчна теорія допускає лише умову на операції, які є тотожностями (жодних кванторів!). Скажімо, категорія полів не є категорією моделей алгебраїчної теорії, тому попереднє твердження до неї незастосовне. Вона не є повною або коповною.
  • (теорема про границю з параметром) Якщо категорія повна (коповна), то категорія повна (коповна) для будь-якої категорії , при чому границі обраховуються поточково.
  • Передпорядок повний, якщо у ньому існує найбільший елемент і будь-яка множина елементів має точну верхню грань. Аналогічно, він коповний, якщо має найменший елемент і будь-яка множина елементів має точну нижню грань.
  • Категорія метричних просторів скінченно повна, але не є повною і не має навіть скінченних кодобутків.

Властивості

[ред. | ред. код]
  • Якщо у категорії існує термінальний об'єкт, будь-яка пара паралельних морфізмів має урівнювач і для будь-яких двох об'єктів існує добуток, то категорія є скінченно повною. Якщо крім того інсують усі малі добутки об'єктів, то категорія повна у малому.
  • Дуально, якщо у категорії існує початковий об'єкт, для будь-яких двох паралельних морфізмів існує коурівнювач та існує [кодобуток]] усіх пар об'єктів, то категорія є скінченно коповною.
  • (Фрейд) Якщо мала категорія повна у малому, то вона є передпорядком.
  • Якщо категорія повна у малому, то для будь-якої малої категорії будь-який функтор має праве розширення Кана за будь-яким функтором , при чому будь-яке таке розширення Кана є поточковим. Твердження явно випливає з подання поточкового розширення Кана як границі.

Література

[ред. | ред. код]
  • С. Маклейн Категории для работающего математика, — М.: ФИЗМАТЛИТ, 2004. — 352 с — ISBN 5-9221-0400-4.
  • Р. Голдблатт Топосы. Категорный анализ логики, — М.: Мир, 1983. — 487 с.
  • F. Borceux. Handbook of Categorical Algebra 1. Basic Category Theory. — Encyclopaedia of Mathematics and its Applications. — Cambridge : Cambridge University Press, 1994. — Т. 1. — 345 p. — ISBN 0 521 44178 1.