Теорема про чотири вершини
Зовнішній вигляд
Теорема про чотири вершини стверджує, що функція кривини простої замкнутої гладкої плоскої кривої має щонайменше чотири локальних екстремуми (зокрема, щонайменше два локальних максимуми і щонайменше два локальних мінімуми). Назва теореми відображає угоду називати екстремальні точки функції кривини вершинами. Ця теорема має багато узагальнень, включно з версією кривої у просторі, де вершина визначається як точка в якій зникає скрут кривої.
Еліпс має в точності чотири вершини — два локальних максимуми кривини в місцях перетину еліпса з великою віссю, і два локальних мінімуми в місцях перетину з малою віссю. На колі всі точки є як локальними максимумами, так і локальними мінімумами кривини, так що на ній нескінченно багато вершин.
- [1] [Архівовано 3 квітня 2018 у Wayback Machine.]
В іншому мовному розділі є повніша стаття Four-vertex theorem(англ.). Ви можете допомогти, розширивши поточну статтю за допомогою перекладу з англійської.
|