GPT-3
Тип | Авторегресійна модель трансформерна модель мови |
---|---|
Автор | OpenAI[1] |
Розробник | OpenAI |
Перший випуск | 11 червня 2020 року (бета) |
Версії | 175B[2] |
Ліцензія | Код не доступний, доступна лише через платний ППІ |
Репозиторій | github.com/openai/gpt-3 |
Вебсайт | openai.com/blog/openai-api |
Поро́джувальний попере́дньо трено́ваний трансфо́рмер 3 (англ. Generative Pre-trained Transformer 3, GPT-3) — це авторегресійна модель мови, яка використовує глибоке навчання, щоби виробляти текст, подібний до людського. Вона є мовною передбачувальною моделлю третього покоління в серії GPT-n, створеній OpenAI, лабораторією досліджень штучного інтелекту в Сан-Франциско.[4] Повна версія GPT-3 має ємність у 175 мільярдів параметрів машинного навчання. GPT-3, яку було представлено в травні 2020 року і яка перебуває в бета-тестуванні станом на липень 2020 року[5], є частиною тенденції попереднього тренування представлень мови в системах обробки природної мови (ОПМ)[1]. Перед випуском GPT-3 найбільшою мовною моделлю була Turing NLG Microsoft, представлена в лютому 2020 року, з ємністю в 17 мільярдів параметрів, або менш ніж 10 % у порівнянні з GPT-3[6].
Якість тексту, породжуваного GPT-3, є настільки високою, що його складно відрізнити від тексту, написаного людиною, що несе як переваги, так і ризики[6]. Оригінальну працю 28 травня 2020 року, яка представила GPT-3, презентували тридцять один дослідник та інженер OpenAI. У своїй праці вони попередили про небезпеки потенціалу GPT-3, й закликали провести дослідження з метою зниження ризику.[1] Девід Чалмерс, австралійський філософ, описав GPT-3 як «одну із найцікавіших та найважливіших систем ШІ з будь-коли зроблених».[7]
22 вересня 2020 року Microsoft оголосила, що отримала ліцензію на «ексклюзивне» використання GPT-3; інші все ще можуть використовувати цей загальнодоступний ППІ для отримування виходу, але лише Microsoft має контроль над первинним кодом.[8]
Згідно журналу «Економіст», вдосконалені алгоритми, потужні комп'ютери, та збільшення оцифрованих даних спричинили революцію у машинному навчанні, завдяки чому нові методики призвели 2010 року до «швидкого вдосконалення в задачах», включно з маніпулюванням мовою.[9] Програмні моделі тренуються навчатися, використовуючи тисячі або мільйони зразків у «структурі, … що в загальних рисах ґрунтується на нейронній архітектурі мозку».[9] Однією з архітектур, які використовують в обробці природної мови (ОПМ), є нейронна мережа, що ґрунтується на моделі глибокого навчання, вперше представлена 2017 року —Трансформер.[10] Моделі GPT-n ґрунтуються на цій нейромережній архітектурі глибокого навчання на основі Трансформера. Існує низка систем ОПМ, здатних оброблювати, видобувати, впорядковувати, з'єднувати, протиставляти, розуміти, та породжувати відповіді на питання.[11]
11 червня 2018 року дослідники та інженери OpenAI опублікувати свою оригінальну працю про породжувальні моделі — мовні моделі — системи штучного інтелекту — які може бути попередньо треновано величезним та різноманітним корпусом тексту через набори даних, у процесі, який вони назвали породжувальним попереднім тренуванням (англ. generative pre-training, GP).[12] Ці автори описали, як в GPT-n було покращено продуктивності розуміння мови в обробці природної мови (ОПМ) за допомогою процесу «породжувального попереднього тренування моделі мови на різноманітнім корпусі неміченого тексту, з подальшим розрізнювальним тонким налаштуванням на для кожної конкретної задачі». Це усунуло потребу в людському керуванні та тривалому міченні вручну.[12]
В лютому 2020 року Microsoft представила своє Тюрінгове породжування природної мови (англ. Turing Natural Language Generation, T-NLG), що було на той момент «найбільшою моделлю мови з будь-коли опублікованих, із 17 мільярдами параметрів».[13] Вона працювала краще за будь-яку іншу модель мови на різноманітних задачах, до яких належали автоматизоване реферування та відповідання на питання.[13]
Сигнальний примірник arXiv 28 травня 2020 року від групи з 31 інженера та дослідника OpenAI[a] описав розробку GPT-3, «моделі мови найвищого рівня» третього покоління.[1][6] Ця команда збільшила ємність GPT-3 на понад два порядки відносно її попередниці, GPT-2,[14] зробивши GPT-3 найбільшою нерозрідженою[прояснити] моделлю мови на той момент.[1][4] Вище число параметрів GPT-3 дає їй вищий рівень точності відносно попередніх версій із меншою ємністю.[15] Ємність GPT-3 є в десять разів більшою за Тюрінгове ППМ Microsoft.[6]
Шістдесят відсотків зваженого набору даних попереднього тренування GPT-3 походить із відфільтрованої версії Common Crawl[en], що складається з 410 мільярдів діграмно кодованих[en] лексем[1] . Іншими джерелами є 19 мільярдів лексем з WebText2, що представляють 22 % зваженого загального, 12 мільярдів лексем з Books1, що представляють 8 %, 55 мільярдів лексем з Books2, що представляють 8 %, та 3 мільярди лексем із Вікіпедії, що представляють 3 %[1] . GPT-3 треновано на сотнях мільярдів слів, і вона здатна, серед іншого, писати код мовами CSS, JSX та Python[5]. Оскільки тренувальні дані GPT-3 були всеосяжними, вона не вимагає подальшого тренування для окремих мовних задач[5].
11 червня 2020 року OpenAI оголосила, що користувачі можуть робити запити на доступ до їхнього дружнього ППІ GPT-3 — «набору інструментів машинного навчання» (англ. «machine learning toolset») — щоби допомогти OpenAI «дослідити сильні сторони та межі» цієї нової технології.[16][17] Це запрошення описувало, що цей ППІ мав інтерфейс загального призначення «текст на вході, текст на виході», що може виконувати майже «будь-яку задачу для англійської мови», замість звичного єдиного сценарію використання.[16] Згідно з одним користувачем, який мав доступ до приватного раннього випуску ППІ GPT-3 OpenAI, GPT-3 була «моторошно доброю» в написанні «напрочуд зв'язного тексту», маючи лише декілька простих підказок[18].
Оскільки GPT-3 може «породжувати новинні статті, які оцінювачам-людям складно відрізнити від статей, написаних людьми»,[6] GPT-3 має «потенціал створити прогрес як у корисних, так і в шкідливих застосуваннях моделей мови».[1] У своїй праці від 28 травня 2020 року дослідники описали в деталях потенційні «шкідливі впливи GPT-3»,[6] до яких належать «дезінформація, спам, фішинг, зловживання правовими та державними процесами[en], написання шахрайських академічних есе[en] та соціально-інженерний претекстинг».[1] Автори привернули увагу до цих небезпек, щоби закликати до дослідження стосовно зниження ризику.[1]
У своєму огляді 29 липня 2020 року в «Нью-Йорк таймс» Фархад Манджу[en] сказав, що GPT-3, яка може породжувати комп'ютерний код та поезію, так само як і прозу, є не просто «дивовижною», «моторошною» та «принижувальною», але й також «більш ніж трохи жахальною»[19].
«Дейлі Ноус» представив низку статей про GPT-3 від дев'яти філософів.[20] Австралійський філософ Девід Чалмерс описав GPT-3 як «одну із найцікавіших та найважливіших систем ШІ з будь-коли зроблених».[7]
В огляді у «Wired» сказано, що GPT-3 «викликала озноб по всій Кремнієвій долині».[21]
У статті в «Towards Data Science» зазначено, що GPT-3 треновано на сотнях мільярдів слів, і що вона здатна писати код мовами CSS, JSX, Python, та іншими[5].
У «National Law Review»[en] сказано, що GPT-3 є «вражаючим кроком у масштабнішому процесі», і що OpenAI та інші перебувають у пошуку «корисних застосувань для всієї цієї потужності», в той же час продовжуючи «працювати в напрямку сильнішого інтелекту».[22]
У статті в «MIT Technology Review», написаній у співавторстві з критиком глибокого навчання Ґері Маркусом[en],[23] зазначено стосовно GPT-3, що її «розуміння світу є часто дуже бідним, що означає, що ви ніколи не можете насправді довіряти тому, що вона каже».[24] Згідно цих авторів, GPT-3 моделює взаємозв'язки між словами, не маючи розуміння значення, що стоїть за кожним словом.
Джером Пезенті, голова лабораторії Facebook A.I., сказав, що GPT-3 є «не безпечною», вказавши на сексистські, расистські та інші упередження й негативний тон, породжувані цією системою, коли її просили обговорити євреїв, жінок, чорношкірих та Голокост.[25]
- GPT-3 використано Ендрю Мейном[en] для AI Writer [Архівовано 31 жовтня 2020 у Wayback Machine.], який дозволяє людям листуватися з історичними діячами електронною поштою.
- GPT-3 використано Джейсоном Рорером[en] в стилізованім під ретро проєкті чатботу, названім «Project December» («Проєкт Грудень»), що є доступним онлайн і дозволяє користувачам спілкуватися з декількома ШІ за допомогою технології GPT-3.
- GPT-3 використано «Ґардіан» для написання статті про те, що ШІ є нешкідливим для людей. Їй згодовано декілька ідей, і вона виробила вісім різних есе, які в підсумку об'єднано в одну статтю[26].
- GPT-3 використовують у AI Dungeon (Темниця ШІ), що породжує текстові пригодницькі ігри.
- GPT-3 використовується для написання текстів та інших маркетингових матеріалів стартапами Copy.ai,[27] Jasper.ai,[28], TextCortex AI[29] та Hypotenuse AI.[30]
- ↑ Brown, Tom B.; Mann, Benjamin; Ryder, Nick; Subbiah, Melanie; Kaplan, Jared; Dhariwal, Prafulla; Neelakantan, Arvind; Shyam, Pranav; Sastry, Girish; Askell, Amanda; Agarwal, Sandhini; Herbert-Voss, Ariel; Krueger, Gretchen; Henighan, Tom; Child, Rewon; Ramesh, Aditya; Ziegler, Daniel M.; Wu, Jeffrey; Winter, Clemens; Hesse, Christopher; Chen, Mark; Sigler, Eric; Litwin, Mateusz; Gray, Scott; Chess, Benjamin; Clark, Jack; Berner, Christopher; McCandlish, Sam; Radford, Alec; Sutskever, Ilya; Amodei, Dario
- ↑ а б в г д е ж и к л Brown, Tom B.; Mann, Benjamin; Ryder, Nick; Subbiah, Melanie; Kaplan, Jared; Dhariwal, Prafulla; Neelakantan, Arvind; Shyam, Pranav; Sastry, Girish; Askell, Amanda; Agarwal, Sandhini; Herbert-Voss, Ariel; Krueger, Gretchen; Henighan, Tom; Child, Rewon; Ramesh, Aditya; Ziegler, Daniel M.; Wu, Jeffrey; Winter, Clemens; Hesse, Christopher; Chen, Mark; Sigler, Eric; Litwin, Mateusz; Gray, Scott; Chess, Benjamin; Clark, Jack; Berner, Christopher; McCandlish, Sam; Radford, Alec; Sutskever, Ilya; Amodei, Dario (22 липня 2020). Language Models are Few-Shot Learners. arXiv:2005.14165.
{{cite arXiv}}
: Проігноровано невідомий параметр|url=
(довідка) (англ.) - ↑ Sutskever I., Neelakantan A., Radford A. et al. Language Models are Few-Shot Learners // ArXiv.org — 2020. — 75 p. — ISSN 2331-8422 — doi:10.48550/ARXIV.2005.14165 — arXiv:2005.14165
- ↑ https://www.makeuseof.com/gpt-models-explained-and-compared
- ↑ а б Shead, Sam (23 липня 2020). Why everyone is talking about the A.I. text generator released by an Elon Musk-backed lab. CNBC. Архів оригіналу за 30 липня 2020. Процитовано 31 липня 2020. (англ.) Між 28 травня та 22 липня 2020 року випущено чотири сигнальні примірники.
- ↑ а б в г Bussler, Frederik (21 липня 2020). Will GPT-3 Kill Coding?. Towards Data Science. Архів оригіналу за 19 серпня 2020. Процитовано 1 серпня 2020. (англ.)
- ↑ а б в г д е Sagar, Ram (3 червня 2020). OpenAI Releases GPT-3, The Largest Model So Far. Analytics India Magazine. Архів оригіналу за 4 серпня 2020. Процитовано 31 липня 2020. (англ.)
- ↑ а б Chalmers, David (30 липня 2020). Weinberg, Justin (ред.). GPT-3 and General Intelligence. Daily Nous. Philosophers On GPT-3 (updated with replies by GPT-3). Архів оригіналу за 4 серпня 2020. Процитовано 4 серпня 2020. (англ.)
- ↑ Hao, Karen (23 вересня 2020). OpenAI is giving Microsoft exclusive access to its GPT-3 language model. MIT Technology Review (англ.). Архів оригіналу за 5 лютого 2021. Процитовано 25 вересня 2020.
Компанії заявляють, що OpenAI продовжуватиме пропонувати свій публічний ППІ, що дозволяє обраним користувачам надсилати текст до GPT-3 або інших моделей OpenAI та отримувати їхній вихід. Проте лише Microsoft матиме доступ до коду, що лежить в основі GTP-3, що дозволяє їм вбудовувати, перепрофільовувати та змінювати модель, як їм заманеться.
(англ.) - ↑ а б An understanding of AI’s limitations is starting to sink in. The Economist. 11 червня 2020. ISSN 0013-0613. Архів оригіналу за 31 липня 2020. Процитовано 31 липня 2020. (англ.)
- ↑ Polosukhin, Illia; Kaiser, Lukasz; Gomez, Aidan N.; Jones, Llion; Uszkoreit, Jakob; Parmar, Niki; Shazeer, Noam; Vaswani, Ashish (12 червня 2017). Attention Is All You Need. arXiv:1706.03762 [cs.CL]. (англ.)
- ↑ Natural Language Processing. Архів оригіналу за 22 серпня 2020. Процитовано 31 липня 2020. (англ.)
- ↑ а б Radford, Alec; Narasimhan, Karthik; Salimans, Tim; Sutskever, Ilya (11 червня 2018). Improving Language Understanding by Generative Pre-Training (PDF). с. 12. Архів оригіналу (PDF) за 5 лютого 2021. Процитовано 31 липня 2020. (англ.)
- ↑ а б Sterling, Bruce (13 лютого 2020). Web Semantics: Microsoft Project Turing introduces Turing Natural Language Generation (T-NLG). Wired. ISSN 1059-1028. Архів оригіналу за 4 листопада 2020. Процитовано 31 липня 2020. (англ.)
- ↑ Language Models are Unsupervised Multitask Learners (PDF). Архів оригіналу (PDF) за 12 грудня 2019. Процитовано 4 грудня 2019.
GPT-2, is a 1.5B parameter Transformer
[Архівовано 2019-12-12 у Wayback Machine.] (англ.) - ↑ Ray, Tiernan (1 червня 2020). OpenAI’s gigantic GPT-3 hints at the limits of language models for AI. ZDNet. Архів оригіналу за 1 червня 2020. Процитовано 31 липня 2020. (англ.)
- ↑ а б OpenAI API. OpenAI. 11 червня 2020. Архів оригіналу за 11 червня 2020. Процитовано 30 жовтня 2020. (англ.)
- ↑ TechCrunch – Startup and Technology News. TechCrunch. 11 червня 2020. Архів оригіналу за 12 червня 2020. Процитовано 31 липня 2020.
Якщо ви коли-небудь хотіли спробувати хвалений набір інструментів машинного навчання OpenAI, то це стало набагато простішим. Ця компанія випустила ППІ, що дає можливість розробникам робити виклики її інструментів ШІ у „практично будь-якій задачі для англійської мови“.
(англ.) - ↑ Arram (9 липня 2020). GPT-3: An AI that's eerily good at writing almost anything. Arram Sabeti. Архів оригіналу за 20 липня 2020. Процитовано 31 липня 2020. (англ.)
- ↑ Manjoo, Farhad (29 липня 2020). How Do You Know a Human Wrote This?. The New York Times. ISSN 0362-4331. Архів оригіналу за 29 жовтня 2020. Процитовано 4 серпня 2020. (англ.)
- ↑ Weinberg, Justin, ред. (30 липня 2020). Philosophers On GPT-3 (updated with replies by GPT-3). Daily Nous. Архів оригіналу за 30 жовтня 2020. Процитовано 31 липня 2020. (англ.)
- ↑ Simonite, Tom (22 липня 2020). Did a Person Write This Headline, or a Machine?. Wired. ISSN 1059-1028. Архів оригіналу за 1 листопада 2020. Процитовано 31 липня 2020. (англ.)
- ↑ Claypoole, Theodore (30 липня 2020). New AI Tool GPT-3 Ascends to New Peaks, But Proves How Far We Still Need to Travel. The National Law Review[en]. Т. 10, № 214. Архів оригіналу за 30 жовтня 2020. Процитовано 4 серпня 2020. (англ.)
- ↑ Marcus, Gary (1 грудня 2018). The deepest problem with deep learning. Medium (англ.). Архів оригіналу за 1 серпня 2019. Процитовано 29 вересня 2020. (англ.)
- ↑ Marcus, Gary; Davis, Ernest (22 серпня 2020). GPT-3, Bloviator: OpenAI’s language generator has no idea what it’s talking about. MIT Technology Review. Архів оригіналу за 23 серпня 2020. Процитовано 23 серпня 2020. (англ.)
- ↑ Metz, Cade (24 листопада 2020). Meet GPT-3. It Has Learned to Code (and Blog and Argue). The New York Times (амер.). ISSN 0362-4331. Архів оригіналу за 6 грудня 2020. Процитовано 24 листопада 2020. (англ.)
- ↑ GPT-3 (8 вересня 2020). A robot wrote this entire article. Are you scared yet, human? | GPT-3. The Guardian (брит.). ISSN 0261-3077. Архів оригіналу за 4 лютого 2021. Процитовано 15 вересня 2020. (англ.)
- ↑ Writing helper Copy.ai raises $2.9M in a round led by Craft Ventures. copy.ai. 17 березня 2021. Процитовано 5 листопада 2022.
- ↑ Dzieza, Josh (20 липня 2022). Can AI write good novels?. The Verge. Процитовано 23 грудня 2022.
- ↑ Democratizing Written Communication - TextCortex Raises $1.2 Million Pre-Seed To Advance Proprietary NLG Capabilities And Launch Chrome Extension. TextCortex AI (амер.). 21 червня 2022. Процитовано 14 лютого 2023.
{{cite news}}
: символ дуже тонкого пробілу в|title=
на позиції 36 (довідка) - ↑ Lomas, Natasha (7 серпня 2020). Hypotenuse AI wants to take the strain out of copywriting for e-commerce. TechCrunch (амер.). Процитовано 5 січня 2023.
- Відео: OpenAI GPT-3 - Good At Almost Everything! на YouTube (Two Minute Papers) (англ.)
- Відео: GPT3: An Even Bigger Language Model на YouTube (Computerphile[en]) (англ.)
- Відео: GPT-3 vs Human Brain на YouTube (Lex Fridman) (англ.)