Перейти до вмісту

Логарифмічно опукла функція

Матеріал з Вікіпедії — вільної енциклопедії.

Кажуть, що функція f означена на опуклій підмножині дійсного векторного простору і така, що приймає додатні значення логарифмічно опукла чи суперопукла[1] якщо , композиція логарифмічної функції з f, це  — опукла функція. Логарифм дуже сповільнює зростання початкової функції , отже якщо композиція зберігає властивість опуклості, то це повинно означати, що початкова функція була 'дійсно опуклою', звідси термін суперопукла.

Логарифмічно опукла функція f — це опукла функція, бо це композиція висхідної функція і функції , яка опукла за припущенням. Зворотнє твердження не завжди істинно: наприклад,  — опукла, але  — ні і тому не логарифмічно опукла. З іншого боку,  — логарифмічно опукла, бо  — опукла. Важливим прикладом логарифмічно опуклої функції є гамма-функція на множині додатних дійсних чисел.

Властивості

[ред. | ред. код]

Див. також

[ред. | ред. код]

Примітки

[ред. | ред. код]
  1. Kingman, J.F.C. 1961. A convexity property of positive matrices. Quart. J. Math. Oxford (2) 12,283-284.
  2. Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, 2004. ISBN 9780521833783.

Література

[ред. | ред. код]