Перейти до вмісту

Перетворення Дзядика

Очікує на перевірку
Матеріал з Вікіпедії — вільної енциклопедії.

Визначення

[ред. | ред. код]

Нижче дотримуємося нумерації формул § 3 розділу IV в [1], стор. 129-147, чи [2], стор. 154-170.

Нехай

задача Коші (ЗК) для звичайного лінійного диференціального рівняння (ЗЛДР), коефіціенти якого

тобто неперервні функції, — довільні дійсні числа.

Перетворення Дзядика ставить у відповідність до задачі Коші звичайного лінійного диференціального рівняння (ЗК ЗЛДР) лінійне інтегральне рівняння

У [3] знайдено просту симетричну (distinct) форму для формул (24), (25) та (15) у [2, § IV.3]:

denoting the -th integral of the function

Theorem. ... is equivalent to the integral equation.

Приклад

Рівняння Бесселя

Підстановкою

отримуємо спрощене рівняння Бесселя

для якого за формулами (24) та (25) обчислюємо

звідки інтегральна форма спрощеного рівняння Бесселя має вигляд:

Використання

[ред. | ред. код]

Перетворення Дзядика ЗК ЗЛДР в інтегральне рівняння є першою частиною розробленого ним апроксимаційного методу розв'язування диференціальних рівнянь, або -методу.

Від 1969 року В. К. Дзядик розробив та глибоко обґрунтував так званий апроксимаційний метод розв'язування диференціальних рівнянь. Цей метод дає змогу ефективно будувати за допомогою ЕОМ (а іноді й без них) многочлени, а також шматково-многочлені агрегати гарного наближення для функцій, які є розв'язкми таких задач: задачі Коші для звичайних диференціальних рівнянь, задачі Ґурси, різних задач для рівнянь із запізненням аргументу, крайових задач для звичайних рівнянь тощо.

Застосування цього методу до лінійних диференціальних рівнянь із многочленними коефіцієнтами вигляду

, де і — многочлени, дало змогу створити та обґрунтувати прості алгоритми для ефективної побудови алгебричних многочленів , які на при в найважливіших випадках здійснюють таке наближення шуканого розв'язку рівняння , яке, з точністю до множника, який не перевищує , збігається з величиною найкращого наближення функції многочленами степеня .

Корнейчук Н. П., Никольский С. М., Шевчук И. А. УМН 34:4 (1979), на стор. 233.

Оригінальний текст (рос.)

Начиная с 1969 г., В. К. Дзядык разработал и глубоко обосновал так называемый аппроксимационный метод решения дифференциальных уравнений. Этот метод даёт возможность эффективно строить при помощи ЭВМ (а иногда и без них) многочлены, а также кусочно-многочленные агрегаты хорошего приближения для функций, которые являются решениями следующих задач: задача Коши для обыкновенных дифференциальных уравнений, задача Гурса, различные задачи для уравнений с запаздывающим аргументом, краевые задачи для обыкновенных уравнений и др.

Применение этого метода к линейным дифференциальным уравнениям с многочленными коэффициентами вида

, где и — многочлены, позволило создать и обосновать простые алгоритмы для эффективного построения алгебраических многочленов , осуществляющих на при в наиболее важных случаях такое приближение искомого решения уравнения , которое с точностью до множителя, не превышающего , совпадает с величиной наилучшего приближения функции многочленами степени .

За допомогою а-методу було знайдено та виправлено помилки у таблицях (напр., у таблицях Корн та Корн).

Цей метод дає асимптотично () найкращу можливу точність наближення, тому працює навіть тоді, коли інші методи не працюють (тобто дають неприпустиму похибку або розбіжні).

Визнання

[ред. | ред. код]

Дзядик В. К., Коновалов В. М., Шевчук І. О. у 1991 році за цикл праць «Наближення диференційовних функцій та апроксимаційні методи розв'язання диференціальних та інтегральних рівнянь» стали лауреатами премії НАН України імені М. М. Крилова.[1]

Джерела

[ред. | ред. код]
  1. Дзядык В. К. Аппроксимационные методы решения дифференциальных и интегральных уравнений / Ин-т математики АН УССР. — К. : Наукова думка, 1988. — 304 с. (рос.)
  2. Dzyadyk V. K. Approximation Methods for Solutions of Differential and Integral Equations. — VSP, Utrecht-Tokyo, 1995. — 325 p.  — ISBN 90-6764-194-4. (англ.)
  3. Dzyadyk Yu. V. Some approximation properties of the a- and AI- quadrature polynomials // Функціональні методи у теорії наближень, теорії операторів, стохастичному аналізі та статистиці. Тези доповідей // Київський Національний університет, Київ, 2001, с. 22–23

Посилання

[ред. | ред. код]

Література

[ред. | ред. код]
  • Біленко В. І., Божонок К. В., Дзядик С. Ю., Стеля О. Б. Кусково-поліноміальні алгоритми аналізу процесів у неоднорідних середовищах. // Кібернетика і системний аналіз, 2018, Т. 54, № 4. - C. 135-141.
  • Біленко В. І., Кирилаха Н. Г. Апроксимаційний метод аналізу інтегральних динамічних моделей з керованою пам'яттю Канторовича-Глушкова // Сучасна інформатика: проблеми, досягнення та перспективи розвитку / Тези доповідей Міжнародної наукової конференції, присвяченої 90-річчю від дня народження В. М. Глушкова. Україна, Київ, 12-13 вересня 2013 року // Київ: Інститут кібернетики імені В. М. Глушкова НАН України, 2013. / Стор. 130-132.

Примітки

[ред. | ред. код]
  1. А. М. Самойленко, В. В. Строк, В. І. Сукретний. Хроніка-2005 // Національна академія наук України. Інститут математики. / С. 112.