Перейти до вмісту

Поточкова збіжність

Матеріал з Вікіпедії — вільної енциклопедії.

Поточкова збіжність — один з видів збіжності послідовності функцій, в якому кожній точці області визначення ставиться у відповідність границя послідовності значень функцій в цій точці.
Функція, визначена таким чином називається поточковою границею, при цьому кажуть що послідовність функцій збігається до граничної поточково.
Поняття поточкової збіжності природно переноситься на функціональні ряди.

Означення

[ред. | ред. код]

Нехай  — послідовність функцій

де Y — лінійний нормований простір. Тоді послідовність збігається поточково до

якщо

Властивості

[ред. | ред. код]
  • Якщо поточкова границя існує, то вона єдина.
  • Якщо послідовність функцій збігається рівномірно, то вона збігається і поточково, причому їхні границі приймають однакове значення.
  • Поточкова границя послідовності вимірних функцій — вимірна. Крім того, множина вимірних функцій — це найменша алгебра функцій замкнена відносно операції поточкової границі, що містить множину неперервних функцій.
  • Поточкова границя послідовності неперервних функцій не може бути всюди розривна. Тому функція Діріхле не є поточковою границею послідовності неперервних функцій.
  • Поточкова границя послідовності неперервних функцій може бути розривною. Наприклад,


Топологія

[ред. | ред. код]

Не існує топології на множині функцій, такої що поточкова збіжність функцій еквівалентна збіжності в цій топології.

Доведемо це від супротивного. Дійсно, нехай така топологія існує. Розглянемо множину неперервних функцій і її замикання в цій топології. Це замикання містить всі поточкові границі неперервних функцій. Воно не містить функцію Діріхле, бо поточкова границя неперервних функцій не може бути всюди розривна. З іншого боку, з цих функцій можна утворити послідовність, яка збігається поточково до функції Діріхле. Це суперечить тому що замикання множини в топологічному просторі є замкненим.

Доведення завершене.

Поточкова збіжність у просторах оснащених мірою

[ред. | ред. код]

У вимірних просторах вводиться поняття збіжності майже всюди — поточкова збіжність в усьому просторі, крім, можливо, множини міри 0. Теорема Єгорова стверджує, що з поточкової збіжності на множині скінченної міри випливає рівномірна збіжність на множині міри, що як завгодно мало відрізняється від міри всього простору.

Див. також

[ред. | ред. код]

Джерела

[ред. | ред. код]