Однорідний многогранник
Однорі́дний многогранник — вершинно транзитивний многогранник (транзитивний відносно вершин, а також ізогональний, тобто є рух, що переводить вершину в будь-яку іншу), грані якого є правильними многокутниками. Звідси випливає, що всі вершини конгруентні і многогранник має високий рівень дзеркальної й обертової симетрії.
Однорідні многогранники можна поділити на опуклі форми з гранями у вигляді правильних опуклих многокутників і зірчасті форми. Зірчасті форми мають грані у вигляді правильних зірчастих многокутників, вершинних фігур або обох видів разом.
Список включає:
- всі 75 непризматичних однорідних многогранників;
- деяких представників нескінченної множини призм та антипризм;
- один окремий випадок, многогранник Скілінга з ребрами, що перетинаються.
1970 року радянський учений Сопов довів[1], що існує лише 75 однорідних многогранників, які не входять до нескінченних серій призм і антипризм. Джон Скілінг (John Skilling) відкрив ще один многогранник, послабивши умову, що ребро може належати лише двом граням. Деякі автори не вважають цей многогранник однорідним, оскільки деякі пари ребер збігаються.
Не включено:
- 40 потенційних однорідних многогранників з виродженими[ru] вершинними фігурами, які мають ребра, що перетинаються (не перераховані Коксетером);
- Однорідні мозаїки (нескінченні многогранники)
- 11 евклідових однорідних мозаїк із опуклими гранями[en]
- 14 евклідових однорідних мозаїк із неопуклими гранями[en]
- Нескінченна кількість однорідних мозаїк на гіперболічній площині .
Використовують чотири схеми нумерації однорідних многогранників, що відрізняються літерами:
- [C] Коксетер зі співавторами (1954)[2]. Список містить опуклі види з номерами від 15 до 32, три призматичні види (номери 33—35) та неопуклі види (номери 36—92).
- [W] Веннінджер (1974)[3]. Список містить 119 фігур: номери 1—5 для платонових тіл, 6—18 для архімедових тіл, 19—66 для зірчастих видів, включно з 4 правильними неопуклими многогранниками, та 67—119 для неопуклих однорідних многогранників.
- [K] Kaleido (програма[4], 1993). Список містить 80 фігур, номери згруповано за симетрією: 1—5 представляють нескінченні серії призматичних форм з діедричною симетрією[en], 6—9 з тетраедричною симетрією, 10—26 з октаедричною симетрією[en], 46—80 з ікосаедричною симетрією.
- [U] Mathematica (програма, 1993)[5]. У програмі, загалом, використано таку ж нумерацію, як у програмі Kaleido, лише перші 5 призматичних види перенесено в кінець списку, отже непризматичні види отримали номери 1—75.
Опуклі форми перераховано в порядку степенів вершинних конфігурацій від 3 граней/вершин і далі, і збільшення сторін грані. Таке впорядкування дозволяє показати топологічну схожість.
Назва | Малюнок | Тип вершинної конфігурації | Символ Вітгоффа |
Сим. | C# | W# | U# | K# | Вер- шин |
Ре- бер |
Гра- ней |
Щіль- ність |
Граней за типами | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Тетраедр | 3.3.3 |
2 3 | Td | C15 | W001 | U01 | K06 | 4 | 6 | 4 | 2 | 1 | 4{3} | |
Трикутна призма | 3.4.4 |
2 | D3h | C33a | -- | U76a | K01a | 6 | 9 | 5 | 2 | 1 | 2{3} +3{4} | |
Зрізаний тетраедр | 3.6.6 |
3 | Td | C16 | W006 | U02 | K07 | 12 | 18 | 8 | 2 | 1 | 4{3} +4{6} | |
Зрізаний куб | 3.8.8 |
4 | Oh | C21 | W008 | U09 | K14 | 24 | 36 | 14 | 2 | 1 | 8{3} +6{8} | |
Зрізаний додекаедр | 3.10.10 |
5 | Ih | C29 | W010 | U26 | K31 | 60 | 90 | 32 | 2 | 1 | 20{3} +12{10} | |
Куб | 4.4.4 |
2 4 | Oh | C18 | W003 | U06 | K11 | 8 | 12 | 6 | 2 | 1 | 6{4} | |
Пятикутна призма | 4.4.5 |
2 | D5h | C33b | -- | U76b | K01b | 10 | 15 | 7 | 2 | 1 | 5{4} +2{5} | |
Шестикутна призма | 4.4.6 |
2 | D6h | C33c | -- | U76c | K01c | 12 | 18 | 8 | 2 | 1 | 6{4} +2{6} | |
Восьмикутна призма | 4.4.8 |
2 | D8h | C33e | -- | U76e | K01e | 16 | 24 | 10 | 2 | 1 | 8{4} +2{8} | |
Десятикутна призма | 4.4.10 |
2 | D10h | C33g | -- | U76g | K01g | 20 | 30 | 12 | 2 | 1 | 10{4} +2{10} | |
Дванадцятикутна призма[en] | 4.4.12 |
2 | D12h | C33i | -- | U76i | K01i | 24 | 36 | 14 | 2 | 1 | 12{4} +2{12} | |
Зрізаний октаедр | 4.6.6 |
3 | Oh | C20 | W007 | U08 | K13 | 24 | 36 | 14 | 2 | 1 | 6{4} +8{6} | |
Зрізаний кубооктаедр | 4.6.8 |
Oh | C23 | W015 | U11 | K16 | 48 | 72 | 26 | 2 | 1 | 12{4} +8{6} +6{8} | ||
Ромбозрізаний ікосододекаедр | 4.6.10 |
Ih | C31 | W016 | U28 | K33 | 120 | 180 | 62 | 2 | 1 | 30{4} +20{6} +12{10} | ||
Додекаедр | 5.5.5 |
2 5 | Ih | C26 | W005 | U23 | K28 | 20 | 30 | 12 | 2 | 1 | 12{5} | |
Зрізаний ікосаедр | 5.6.6 |
3 | Ih | C27 | W009 | U25 | K30 | 60 | 90 | 32 | 2 | 1 | 12{5} +20{6} | |
Октаедр | 3.3.3.3 |
2 3 | Oh | C17 | W002 | U05 | K10 | 6 | 12 | 8 | 2 | 1 | 8{3} | |
Квадратна антипризма | 3.3.3.4 |
2 2 4 | D4d | C34a | -- | U77a | K02a | 8 | 16 | 10 | 2 | 1 | 8{3} +2{4} | |
П'ятикутна антипризма | 3.3.3.5 |
2 2 5 | D5d | C34b | -- | U77b | K02b | 10 | 20 | 12 | 2 | 1 | 10{3} +2{5} | |
Шестикутна антипризма | 3.3.3.6 |
2 2 6 | D6d | C34c | -- | U77c | K02c | 12 | 24 | 14 | 2 | 1 | 12{3} +2{6} | |
Восьмикутна антипризма | 3.3.3.8 |
2 2 8 | D8d | C34e | -- | U77e | K02e | 16 | 32 | 18 | 2 | 1 | 16{3} +2{8} | |
Десятикутна антипризма[en] | 3.3.3.10 |
2 2 10 | D10d | C34g | -- | U77g | K02g | 20 | 40 | 22 | 2 | 1 | 20{3} +2{10} | |
Дванадцятикутна антипризма | 3.3.3.12 |
2 2 12 | D12d | C34i | -- | U77i | K02i | 24 | 48 | 26 | 2 | 1 | 24{3} +2{12} | |
Кубооктаедр | 3.4.3.4 |
3 4 | Oh | C19 | W011 | U07 | K12 | 12 | 24 | 14 | 2 | 1 | 8{3} +6{4} | |
Ромбокубооктаедр | 3.4.4.4 |
2 | Oh | C22 | W013 | U10 | K15 | 24 | 48 | 26 | 2 | 1 | 8{3} +(6+12){4} | |
Ромбоікосододекаедр | 3.4.5.4 |
2 | Ih | C30 | W014 | U27 | K32 | 60 | 120 | 62 | 2 | 1 | 20{3} +30{4} +12{5} | |
Ікосододекаедр | 3.5.3.5 |
3 5 | Ih | C28 | W012 | U24 | K29 | 30 | 60 | 32 | 2 | 1 | 20{3} +12{5} | |
Ікосаедр | 3.3.3.3.3 |
2 3 | Ih | C25 | W004 | U22 | K27 | 12 | 30 | 20 | 2 | 1 | 20{3} | |
Кирпатий куб | 3.3.3.3.4 |
2 3 4 | O | C24 | W017 | U12 | K17 | 24 | 60 | 38 | 2 | 1 | (8+24){3} +6{4} | |
Кирпатий додекаедр | 3.3.3.3.5 |
2 3 5 | I | C32 | W018 | U29 | K34 | 60 | 150 | 92 | 2 | 1 | (20+60){3} +12{5} |
Назва | Малюнок | Символ Вітгоффа |
Тип вершинної конфігурації | Сим. | C# | W# | U# | K# | Вер- шин |
Ре- бер |
Гра- ней |
Щіль- ність |
Граней за типом | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Октагеміоктаедр[en] | 3 | 6.3/2.6.3 |
Oh | C37 | W068 | U03 | K08 | 12 | 24 | 12 | 0 | 8{3}+4{6} | |||
Тетрагемігексаедр | 2 | 4.3/2.4.3 |
Td | C36 | W067 | U04 | K09 | 6 | 12 | 7 | 1 | 4{3}+3{4} | |||
Кубогеміоктаедр[en] | 3 | 6.4/3.6.4 |
Oh | C51 | W078 | U15 | K20 | 12 | 24 | 10 | -2 | 6{4}+4{6} | |||
Великий додекаедр |
2 5 | (5.5.5.5.5)/2 |
Ih | C44 | W021 | U35 | K40 | 12 | 30 | 12 | -6 | 3 | 12{5} | ||
Великий ікосаедр |
2 3 | (3.3.3.3.3)/2 |
Ih | C69 | W041 | U53 | K58 | 12 | 30 | 20 | 2 | 7 | 20{3} | ||
Великий бітригональний ікосододекаедр[en] |
3 5 | (5.3.5.3.5.3)/2 |
Ih | C61 | W087 | U47 | K52 | 20 | 60 | 32 | -8 | 6 | 20{3}+12{5} | ||
Малий ромбогексаедр[en] |
4.8.4/3.8 |
Oh | C60 | W086 | U18 | K23 | 24 | 48 | 18 | -6 | 12{4}+6{8} | ||||
Малий кубокубооктаедр[en] |
4 | 8.3/2.8.4 |
Oh | C38 | W069 | U13 | K18 | 24 | 48 | 20 | -4 | 2 | 8{3}+6{4}+6{8} | ||
Великий ромбокубооктаедр[en] |
2 | 4.3/2.4.4 |
Oh | C59 | W085 | U17 | K22 | 24 | 48 | 26 | 2 | 5 | 8{3}+(6+12){4} | ||
Малий додеко- гемідодекаедр[en] |
5 | 10.5/4.10.5 |
Ih | C65 | W091 | U51 | K56 | 30 | 60 | 18 | -12 | 12{5}+6{10} | |||
Великий додеко- геміікосаедр[en] |
3 | 6.5/4.6.5 |
Ih | C81 | W102 | U65 | K70 | 30 | 60 | 22 | -8 | 12{5}+10{6} | |||
Малий ікосо- гемідодекаедр[en] |
5 | 10.3/2.10.3 |
Ih | C63 | W089 | U49 | K54 | 30 | 60 | 26 | -4 | 20{3}+6{10} | |||
Малий додекоікосаедр[en] |
10.6.10/9.6/5 |
Ih | C64 | W090 | U50 | K55 | 60 | 120 | 32 | -28 | 20{6}+12{10} | ||||
Малий ромбододекаедр[en] |
10.4.10/9.4/3 |
Ih | C46 | W074 | U39 | K44 | 60 | 120 | 42 | -18 | 30{4}+12{10} | ||||
Малий додеко- ікосододекаедр[en] |
5 | 10.3/2.10.5 |
Ih | C42 | W072 | U33 | K38 | 60 | 120 | 44 | -16 | 2 | 20{3}+12{5}+12{10} | ||
Ромбоікосаедр[en] | 6.4.6/5.4/3 |
Ih | C72 | W096 | U56 | K61 | 60 | 120 | 50 | -10 | 30{4}+20{6} | ||||
Великий ікосо- ікосододекаедр[en] |
3 | 6.3/2.6.5 |
Ih | C62 | W088 | U48 | K53 | 60 | 120 | 52 | -8 | 6 | 20{3}+12{5}+20{6} | ||
Пентаграмна призма |
2 | 5/2.4.4 |
D5h | C33b | -- | U78a | K03a | 10 | 15 | 7 | 2 | 2 | 5{4}+2{5/2} | ||
Гептаграмна призма 7/2 |
2 | 7/2.4.4 |
D7h | C33d | -- | U78b | K03b | 14 | 21 | 9 | 2 | 2 | 7{4}+2{7/2} | ||
Гептаграмна призма 7/3 |
2 | 7/3.4.4 |
D7h | C33d | -- | U78c | K03c | 14 | 21 | 9 | 2 | 3 | 7{4}+2{7/3} | ||
Октаграмна призма[en] |
2 | 8/3.4.4 |
D8h | C33e | -- | U78d | K03d | 16 | 24 | 10 | 2 | 3 | 8{4}+2{8/3} | ||
Пентаграмна антипризма[en] |
2 2 5/2 | 5/2.3.3.3 |
D5h | C34b | -- | U79a | K04a | 10 | 20 | 12 | 2 | 2 | 10{3}+2{5/2} | ||
Пентаграмна перехрещена антипризма[en] |
2 2 5/3 | 5/3.3.3.3 |
D5d | C35a | -- | U80a | K05a | 10 | 20 | 12 | 2 | 3 | 10{3}+2{5/2} | ||
Гептаграмна антипризма 7/2 |
2 2 7/2 | 7/2.3.3.3 |
D7h | C34d | -- | U79b | K04b | 14 | 28 | 16 | 2 | 3 | 14{3}+2{7/2} | ||
Гептаграмна антипризма 7/3 |
2 2 7/3 | 7/3.3.3.3 |
D7d | C34d | -- | U79c | K04c | 14 | 28 | 16 | 2 | 3 | 14{3}+2{7/3} | ||
Гептаграмна перехрещена антипризма |
2 2 7/4 | 7/4.3.3.3 |
D7h | C35b | -- | U80b | K05b | 14 | 28 | 16 | 2 | 4 | 14{3}+2{7/3} | ||
Октаграмна антипризма |
2 2 8/3 | 8/3.3.3.3 |
D8d | C34e | -- | U79d | K04d | 16 | 32 | 18 | 2 | 3 | 16{3}+2{8/3} | ||
Октаграмна перехрещена антипризма[en] |
2 2 8/5 | 8/5.3.3.3 |
D8d | C35c | -- | U80c | K05c | 16 | 32 | 18 | 2 | 5 | 16{3}+2{8/3} | ||
Малий зірчастий додекаедр |
2 5/2 | (5/2)5 |
Ih | C43 | W020 | U34 | K39 | 12 | 30 | 12 | -6 | 3 | 12{5/2} | ||
Великий зірчастий додекаедр |
2 5/2 | (5/2)3 |
Ih | C68 | W022 | U52 | K57 | 20 | 30 | 12 | 2 | 7 | 12{5/2} | ||
Бітриагональний додекододекаедр[en] |
5/3 5 | (5/3.5)3 |
Ih | C53 | W080 | U41 | K46 | 20 | 60 | 24 | -16 | 4 | 12{5}+12{5/2} | ||
Малий бітриагональний ікосододекаедр[en] |
5/2 3 | (5/2.3)3 |
Ih | C39 | W070 | U30 | K35 | 20 | 60 | 32 | -8 | 2 | 20{3}+12{5/2} | ||
Зірчастий зрізаний гексаедр[en] |
4/3 | 8/3.8/3.3 |
Oh | C66 | W092 | U19 | K24 | 24 | 36 | 14 | 2 | 7 | 8{3}+6{8/3} | ||
Великий ромбогексаедр |
4.8/3.4/3.8/5 |
Oh | C82 | W103 | U21 | K26 | 24 | 48 | 18 | -6 | 12{4}+6{8/3} | ||||
Великий кубокубооктаедр[en] |
4/3 | 8/3.3.8/3.4 |
Oh | C50 | W077 | U14 | K19 | 24 | 48 | 20 | -4 | 4 | 8{3}+6{4}+6{8/3} | ||
Великий додеко- гемідодекаедр[en] |
5/3 | 10/3.5/3.10/3.5/2 |
Ih | C86 | W107 | U70 | K75 | 30 | 60 | 18 | -12 | 12{5/2}+6{10/3} | |||
Малий додеко- геміікосаедр[en] |
3 | 6.5/3.6.5/2 |
Ih | C78 | W100 | U62 | K67 | 30 | 60 | 22 | -8 | 12{5/2}+10{6} | |||
Додекододекаедр | 5/2 5 | (5/2.5)2 |
Ih | C45 | W073 | U36 | K41 | 30 | 60 | 24 | -6 | 3 | 12{5}+12{5/2} | ||
Великий ікосо- гемідодекаедр[en] |
5/3 | 10/3.3/2.10/3.3 |
Ih | C85 | W106 | U71 | K76 | 30 | 60 | 26 | -4 | 20{3}+6{10/3} | |||
Великий ікосо- додекаедр |
5/2 3 | (5/2.3)2 |
Ih | C70 | W094 | U54 | K59 | 30 | 60 | 32 | 2 | 7 | 20{3}+12{5/2} | ||
Кубозрізаний кубооктаедр[en] |
8/3.6.8 |
Oh | C52 | W079 | U16 | K21 | 48 | 72 | 20 | -4 | 4 | 8{6}+6{8}+6{8/3} | |||
Великий зрізаний кубооктаедр[en] |
8/3.4.6/5 |
Oh | C67 | W093 | U20 | K25 | 48 | 72 | 26 | 2 | 1 | 12{4}+8{6}+6{8/3} | |||
Зрізаний великий додекаедр[en] |
5 | 10.10.5/2 |
Ih | C47 | W075 | U37 | K42 | 60 | 90 | 24 | -6 | 3 | 12{5/2}+12{10} | ||
Малий зірчастий зрізаний додекаедр[en] |
5/3 | 10/3.10/3.5 |
Ih | C74 | W097 | U58 | K63 | 60 | 90 | 24 | -6 | 9 | 12{5}+12{10/3} | ||
Великий зірчастий зрізаний додекаедр[en] |
5/3 | 10/3.10/3.3 |
Ih | C83 | W104 | U66 | K71 | 60 | 90 | 32 | 2 | 13 | 20{3}+12{10/3} | ||
Зрізаний великий ікосаедр[en] |
3 | 6.6.5/2 |
Ih | C71 | W095 | U55 | K60 | 60 | 90 | 32 | 2 | 7 | 12{5/2}+20{6} | ||
Великий додекоікосаедр[en] |
6.10/3.6/5.10/7 |
Ih | C79 | W101 | U63 | K68 | 60 | 120 | 32 | -28 | 20{6}+12{10/3} | ||||
Великий ромбододекаедр[en] |
4.10/3.4/3.10/7 |
Ih | C89 | W109 | U73 | K78 | 60 | 120 | 42 | -18 | 30{4}+12{10/3} | ||||
Ікосо- додекододекаедр[en] |
3 | 6.5/3.6.5 |
Ih | C56 | W083 | U44 | K49 | 60 | 120 | 44 | -16 | 4 | 12{5}+12{5/2}+20{6} | ||
Малий бітриагональний додеко- ікосододекаедр[en] |
5 | 10.5/3.10.3 |
Ih | C55 | W082 | U43 | K48 | 60 | 120 | 44 | -16 | 4 | 20{3}+12{;5/2}+12{10} | ||
Великий бітриагональний додеко- ікосододекаедр[en] |
5/3 | 10/3.3.10/3.5 |
Ih | C54 | W081 | U42 | K47 | 60 | 120 | 44 | -16 | 4 | 20{3}+12{5}+12{10/3} | ||
Великий додеко- ікосододекаедр[en] |
5/3 | 10/3.5/2.10/3.3 |
Ih | C77 | W099 | U61 | K66 | 60 | 120 | 44 | -16 | 10 | 20{3}+12{5/2}+12{10/3} | ||
Малий ікосо- ікосододекаедр[en] |
3 | 6.5/2.6.3 |
Ih | C40 | W071 | U31 | K36 | 60 | 120 | 52 | -8 | 2 | 20{3}+12{5/2}+20{6} | ||
Ромбододеко- додекаедр[en] |
2 | 4.5/2.4.5 |
Ih | C48 | W076 | U38 | K43 | 60 | 120 | 54 | -6 | 3 | 30{4}+12{5}+12{5/2} | ||
Великий ромбоікосо- додекаедр[en] |
2 | 4.5/3.4.3 |
Ih | C84 | W105 | U67 | K72 | 60 | 120 | 62 | 2 | 13 | 20{3}+30{4}+12{5/2} | ||
Ікосозрізаний додекододекаедр[en] |
10/3.6.10 |
Ih | C57 | W084 | U45 | K50 | 120 | 180 | 44 | -16 | 4 | 20{6}+12{10}+12{10/3} | |||
Зрізаний додекододекаедр[en] | 10/3.4.10/9 |
Ih | C75 | W098 | U59 | K64 | 120 | 180 | 54 | -6 | 3 | 30{4}+12{10}+12{10/3} | |||
Великий зрізаний ікосододекаедр[en] | 10/3.4.6 |
Ih | C87 | W108 | U68 | K73 | 120 | 180 | 62 | 2 | 13 | 30{4}+20{6}+12{10/3} | |||
Кирпатий додекододекаедр[en] | 2 5/2 5 | 3.3.5/2.3.5 |
I | C49 | W111 | U40 | K45 | 60 | 150 | 84 | -6 | 3 | 60{3}+12{5}+12{5/2} | ||
Вивернутий кирпатий додекододекаедр[en] | 5/3 2 5 | 35/3.3.3.5 |
I | C76 | W114 | U60 | K65 | 60 | 150 | 84 | -6 | 9 | 60{3}+12{5}+12{5/2} | ||
Великий кирпатий ікосододекаедр[en] |
2 5/2 3 | 34.5/2 |
I | C73 | W116 | U57 | K62 | 60 | 150 | 92 | 2 | 7 | (20+60){3}+12{5/2} | ||
Великий вивернутий кирпатий ікосододекаедр[en] |
5/3 2 3 | 33.5/3 |
I | C88 | W113 | U69 | K74 | 60 | 150 | 92 | 2 | 13 | (20+60){3}+12{5/2} | ||
Великий вивернутий оберненокирпатий ікосододекаедр |
3/25/3 2 | (34.5/2)/2 |
I | C90 | W117 | U74 | K79 | 60 | 150 | 92 | 2 | 37 | (20+60){3}+12{5/2} | ||
Великий кирпатий додеко- ікосододекаедр[en] |
5/35/2 3 | 33.5/3.3.5/2 |
I | C80 | W115 | U64 | K69 | 60 | 180 | 104 | -16 | 10 | (20+60){3}+(12+12){5/2} | ||
Кирпатий ікосо- додекододекаедр[en] |
5/3 3 5 | 33.5.5/3 |
I | C58 | W112 | U46 | K51 | 60 | 180 | 104 | -16 | 4 | (20+60){3}+12{5}+12{5/2} | ||
Малий кирпатий ікосо- ікосододекаедр[en] |
5/2 3 3 | 35.5/2 |
Ih | C41 | W110 | U32 | K37 | 60 | 180 | 112 | -8 | 2 | (40+60){3}+12{5/2} | ||
Малий вивернутий оберненокирпатий ікосо- ікосододекаедр[en] |
3/23/25/2 | (35.5/3)/2 |
Ih | C91 | W118 | U72 | K77 | 60 | 180 | 112 | -8 | 38 | (40+60){3}+12{5/2} | ||
Великий біромбо- ікосододекаедр[en] |
nowrap="" | 3/25/3 3 5/2 | (4.5/3.4.3. 4.5/2.4.3/2)/2 |
Ih | C92 | W119 | U75 | K80 | 60 | 240 | 124 | -56 | 40{3}+60{4}+24{5/2} |
Назва за Бауером (Bower) |
Малюнок | Символ Вітгоффа |
Вершинна конфігурація | Група симетрії |
C# | W# | U# | K# | Вершин | Ребер | Граней | Щіль-ність | Граней за типами | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Великий бікирпатий біромбо- бідодекаедр[en] |
(3/2) 5/3 (3) 5/2 | (5/2.4.3.3.3.4.5/3.4.3/2.3/2.3/2.4)/2 | Ih | - | - | - | - | 60 | 240 (*) | 204 | 24 | 120{3}+60{4}+24{5/2} |
- (*): У Великому бікирпатому біромбобідодекаедрі 120 з 240 ребер належать чотирьом граням. Якщо ці 120 ребер рахувати як дві пари ребер, що збігаються, де кожне ребро належить тільки двом граням, то всього буде 360 ребер і характеристика ейлера стане рівною −88. Зважаючи на цю виродженість, ребер многогранник не всі визнають однорідним.
- U# — однорідні номери: U01—U80 (тетраедр перший, призми з номерами 76+)
- K# — номери Kaleido software: K01—K80 (Kn = Un-5 для n від 6 до 80) (призми 1-5, тетраедр і далі 6+)
- W# — моделі Маґнуса Веннінґера: W001—W119
- 1—18 — 5 опуклих правильних і 13 опуклих напівправильних
- 20—22, 41 — 4 неопуклі правильні
- 19—66 — 48 зірчастих форм/з'єднань (неправильні відсутні в цьому списку)
- 67—109 — 43 неопуклих гостроносих однорідних многогранників
- 110—119 — 10 неопуклих кирпатих однорідних многогранників
- — ейлерова характеристика. Однорідні мозаїки на площині відповідають топології тора з ейлеровою характеристикою нуль.
- Щільність — щільність многогранника[en] представляє число обертів многогранника навколо центру. Число відсутнє для неорієнтовних многогранників і для геміполіедрів[en] (многогранників, що мають грані, які проходять через центр многогранника), для яких немає чіткого визначення щільності.
- Зауваження про малюнки вершинних фігур:
- Світлими відрізками подано «вершинну фігуру» многогранника. Кольорові грані включено до малюнка вершинної фігури, щоб бачити їх зв'язки. Деякі грані, що перетинаються, намальовано візуально хибно, оскільки візуально вони не показують, які частини розташовані попереду.
- ↑ Сопов С.П. Доказательство полноты перечня элементарных однородных многогранников // Украинский геометрический сборник. — 1970. — Вип. 8. — С. 139-156.
- ↑ Coxeter, 1938.
- ↑ Веннинджер, 1974.
- ↑ Kaleidoscopic Construction of Uniform Polyhedra, Dr. Zvi Har'El
- ↑ Maeder, 1993.
- М. Веннинджер. Модели многогранников. — «Мир», 1974.
- Magnus Wenninger. Dual Models. — Cambridge University Press, 1983. — ISBN 0-521-54325-8.
- H. S. M. Coxeter, M. S. Longuet-Higgins, J. C. P. Miller. Uniform polyhedra // Philosophical Transactions of the Royal Society of London. Series A. Mathematical and Physical Sciences. — The Royal Society, 1954. — Т. 246, вип. 916 (21 січня). — С. 401—450. — ISSN 0080-4614. — DOI: .
- H. S. M. Coxeter, Patrick du Val[en], H. T. Flather, J. F. Petrie. The Fifty-nine Icosahedra. — University of Toronto studies, 1938. — (mathematical series 6: 1–26.) Third edition (1999) Tarquin ISBN 978-1-899618-32-3.
- J. Skilling. The complete set of uniform polyhedra // Philosophical Transactions of the Royal Society of London. Series A. Mathematical and Physical Sciences. — 1975. — Т. 278, вип. 1278 (21 січня). — С. 111–135. — ISSN 0080-4614. — DOI: .
- Roman E. Maeder. Uniform Polyhedra // The Mathematica Journal. — 1993. — Т. 3, вип. 4 (21 січня).
- Stella: Polyhedron Navigator. Архів оригіналу за 9 липня 2010. Процитовано 15 листопада 2015. — Software able to generate and print nets for all uniform polyhedra. Used to create most images on this page.
- Robert Webb. Uniform Polyhedra and their Duals. Архів оригіналу за 5 грудня 2015. Процитовано 15 листопада 2015.
- Сопов С. П. Доказательство полноты перечня элементарных однородных многогранников Архивная копия от 7 ноября 2017 на Wayback Machine // Украинский геометрический сборник, выпуск 8, 1970 год, стр. 139—156.
- Нумерація однорідних: U1—U80, (тетраедр перший)
- Paul Bourke. Uniform Polyhedra (80). Архів оригіналу за 11 вересня 2006.
- Weisstein, Eric W. Однорідний многогранник(англ.) на сайті Wolfram MathWorld.
- Roman E. Maeder. The Uniform Polyhedra. MathConsult AG. Архів оригіналу за 5 червня 2014. Процитовано 15 листопада 2015.
- All uniform polyhedra by rotation group. Архів оригіналу за 21 жовтня 2014. Процитовано 15 листопада 2015.
- Sam Gratrix. Uniform Polyhedra Summary. Gratrix.net. Архів оригіналу за 10 листопада 2017. Процитовано 15 листопада 2015.
- [недоступне посилання — історія]
- James R. Buddenhagen. Uniform Polyhedra. Архів оригіналу за 4 березня 2016. Процитовано 15 листопада 2015.
- Нумерація Kaleido: K1—K80 (п'ятикутна призма перша)
- Zvi Har’El. Kaleido. Архів оригіналу за 20 травня 2011.
- Uniform Solution for Uniform Polyhedra (PDF). Архів оригіналу (PDF) за 15 липня 2009.
- V. Bulatov. Uniform Polyhedra. Архів оригіналу за 25 липня 2011. Процитовано 15 листопада 2015.
- Jim McNeill. Uniform Polyhedra. Архів оригіналу за 24 вересня 2015. Процитовано 15 листопада 2015.
- U. Mikloweit. Facetings of uniform polyhedra. Архів оригіналу за 24 вересня 2015. Процитовано 15 листопада 2015.
- Zvi Har’El. Kaleido. Архів оригіналу за 20 травня 2011.