Перейти до вмісту

Ізоморфізм порядку

Матеріал з Вікіпедії — вільної енциклопедії.

У теорії порядку, ізоморфізм порядку — це особливий різновид монотонної функції, що формує підхоже поняття ізоморфізму для частково впорядкованих множин. Коли дві частково впорядковані множини пов'язані ізоморфізмом порядку їх можна вважати по суті однаковими у сенсі, що кожен з порядків можна отримати з іншого просто перейменуванням елементів.

Приклади

[ред. | ред. код]
  • Якщо і зі стандартним порядком, тоді задана як і це ізоморфізм порядку.
  • із це ізоморфізм порядку за умови стандартного порядку.
  • Нехай має порядок, в якому для всіх натуральних чисел У такому разі не існує ізоморфізму порядку між і

Посилання

[ред. | ред. код]