У теорії імовірностей і математичній статистицірозподіл Діріхле (за іменем Йоганна Петера Густава Лежьона-Діріхле), позначають часто — це сімейство безупинних багатовимірних імовірних розподілів невід’ємних дійсних чисел, параметризованих вектором . Розподіл Діріхле є узагальненням Бета-розподілу на багатовимірний випадок. Тобто, його функція щільності повертає значення імовірності того, що імовірність кожного з K взаємновиключних подій дорівнює за умови, що кожна подія спостерігалася раз.
Розподіл Діріхле є сполученим апріорним розподілом до мультиноміального розподілу, а саме: якщо
де - число входжень і у вибірку з n точок дискретного розподілу на {1, ..., K}, визначеного через X, то
Цей зв'язок використовується в Байєсівській статистиці для того, щоб оцінити приховані параметри дискретного імовірносного розподілу , маючи набір з n вибірок. Очевидно, якщо апріорний розподіл позначений як , то - це апостеріорний розподіл після серії спостережень з гістограмою .
Попри те, що Xі не є незалежними один від одного, вони можуть бути згенерованні з набору з незалежних гама випадкових величин. Однак, тому що сума губиться в процесі формування , стає неможливо відновити початкові значення гамма-випадкових величин тільки за цими значеннями. Проте, завдяки тому, що працювати з незалежними випадковими величинами простіше, це перетворення параметрів може бути корисно при доведенні властивостей розподілу Діріхле.
Метод побудови випадкового вектора для розподілу Діріхле розмірності K з параметрами випливає безпосередньо з цього зв'язку. Спочатку одержимо K незалежних випадкових вибірок з гамма-розподілів, кожен з який має щільність
Як приклад використання розподілу Діріхле можна запропонувати задачу, у якій потрібно розрізати нитки (кожна початкової довжини 1.0) на K частин з різними довжинами так, щоб усі частини мали задану середню довжину, але з можливістю деякої варіації відносних довжин частин. Значення α/α0 визначають середні довжини частин нитки, що вийшли з розподілу. Дисперсія навколо середнього значення зворотньо пропорційна α0.