Хоча функція в нулі не визначена, проте коли наближається до нуля, її значення стає як завгодно близьким до 1. Іншими словами, границя цієї функції в нулі дорівнює 1.
Границя функції в точці, граничній для області визначення функції, називається таке число, до якого значення даної функції прямує при спрямуванні її аргументу до цієї точки. Одне з основоположних понять математичного аналізу.
Незважаючи на те, що математичний аналіз розвивався у 17-му та 18-му століттях, сучасна ідея границі функції походить від Бернард Больцано, який у 1817 році ввів основи техніки епсилон-дельта для визначення неперервних функцій. Проте його роботи за життя не були відомими.[1]
У своїй книзі Cours d'analyse 1821 року Оґюстен-Луї Коші обмірковував змінні величини, нескінченно малі та границі, визначив неперервність , сказавши, що нескінченно мала зміна x обов’язково призводить до нескінченно малої зміни у, при цьому використовував строге визначення епсилон-дельта в доведеннях.[2] У 1861 році Вейєрштрас вперше ввів визначення границі в позначеннях епсилон-дельта у тому вигляді, який зазвичай записують сьогодні.[3] Він також ввів позначення та .[4]
Сучасне позначення з розміщенням стрілки знизу ввів Ґодфрі Гарольд Гарді у своїй книзі «Курс чистої математики» в 1908 році.[5]
Число називається границею функції в точці, якщо для довільного дійсного числа існує дійсне таке, що для будь-якого дійсного з виконується нерівність .
Позначення:
або
при .
Під і можна розуміти як «похибку» та «відстань» відповідно. Фактично, Коші використовував як позначення для «похибки» у деяких своїх роботах[2], а у своєму визначенні неперервності він використовував нескінченно малу , а не чи . У цих позначеннях похибка обчислення значення границі зменшується при зменшенні відстані до граничної точки.
Число називається границею функції в точці, якщо для довільної послідовності, при , що збігається до числа , відповідна послідовність значень функції збіжна і має границею одне і теж саме число .
Одностороння границя — це границя функції однієї змінної в деякій точці, коли аргумент прямує до значення аргументу у цій точці окремо зі сторони більших аргументів (правостороння границя), або зі сторони менших аргументів (лівостороння границя).
Означення правосторонньої границі
Нехай і — гранична точка множини такі, що . Число називається правосторонньою границею функції в точці, якщо для довільного дійсного числа існує дійсне таке, що для будь-якого дійсного з виконується нерівність .
Правосторонню границю прийнято позначати наступним чином:
Означення лівосторонньої границі
Нехай і — гранична точка множини такі, що . Число називається лівосторонньою границею функції в точці, якщо для довільного дійсного числа існує дійсне таке, що для будь-якого дійсного з виконується нерівність .
Для лівосторонньої границі прийняті такі позначення:
Використовуються також наступні скорочення:
і для правої границі;
і для лівої границі.
Якщо обидві односторонні границі існують в точці та рівні в ній, то можна показати, що . Якщо односторонні границі існують в точці , але не рівні, то границі в точці не існує. Якщо будь-яка одностороння границя не існує, то і границі також не існує.
не має границі в точці (лівостороння границя не існує через коливальний характер функції синуса, а правостороння границя не існує через асимптотичну поведінку оберненої функції), але має границю і кожній іншій точці.
має границю для кожної ненульової точки x (дорівнює 1 для від’ємного x і дорівнює 2 для додатного x). Однак, границі при x = 0 не існує (лівостороння границя дорівнює 1, а правостороння — 2).
Границя функції в нескінченності визначає поведінку значень функції, коли модуль її аргумента стає нескінченно великим. Існують різні означення таких границь, але вони рівгосильні між собою.
Нехай , — необмежена зверху множина, . Число називається границею функції при , якщо для довільного дійсного числа існує дійсне таке, що для будь-якого дійсного з виконується нерівність .
Позначення: або при .
Нехай , — необмежена знизу множина, . Число називається границею функції при , якщо для довільного дійсного числа існує дійсне таке, що для будь-якого дійсного з виконується нерівність .
Нехай , — необмежена зверху множина, . Число називається границею функції при , якщо для довільної послідовності , яка прямує до при , відповідна послідовність значень функції збіжна і має границею одне і теж саме число .
Нехай , — необмежена знизу множина, . Число називається границею функції при , якщо для довільної послідовності , яка прямує до при , відповідна послідовність значень функції збіжна і має границею одне і теж саме число .
Для функції, значення якої зростають або спадають безмежно, тобто функція розходиться, звичайна границя не існує. У цьому випадку можна ввести границі з нескінченними значеннями.
Нехай , — гранична точка множини і .
Кажуть, що прямує до плюс нескінченності в точці , якщо для довільного дійсного числа існує дійсне таке, що для будь-якого дійсного з виконується нерівність .
Позначення: або при .
Кажуть, що прямує до мінус нескінченності в точці , якщо для довільного дійсного числа існує дійсне таке, що для будь-якого дійсного з виконується нерівність .
Позначення: або при .
Можна поєднувати ідеї декількох означень границь в точці за Коші природним чином, щоб отримати визначення для різних комбінацій, наприклад
Нехай , — гранична точка , задані функції та існують границі , . Тоді при таких умовах границя функції в точці має наступні властивості:
Якщо і , то .
Якщо і , то
.
Якщо , то .
Теорема про арифметичні дії
;
;
;
Якщо додатково , то
якщо права частина можлива.
Теорема про арифметичні дії також дійсна для односторонніх границь, у тому числі коли границя дорівнює або . У кожній рівності вище, коли одна з границь праворуч дорівнює або , границя ліворуч іноді все ще може визначатися наступними правилами:
не випливає, що , де і , b — гранична точка множини A, a — гранична точка множини B. Це «правило ланцюга» діє, якщо виконується одна з наступних додаткових умов:
Це правило використовує похідні, щоб розкрити невизначеності вигляду 0/0 або ±∞/∞, і застосовується лише до таких випадків. Нехай f(x) і g(x), визначені на відкритому інтерваліI, що містить граничну точку c, які задовольняють наступні умови:
Це можна довести, поділивши як чисельник, так і знаменник на . Якщо чисельник є поліномом більшого степеня ніж знаменник, то у цьому випадку раціональна функція прямує до . Якщо знаменник більшого степеня ніж чисельник, то границя дорівнює 0.
Нехай , — метричні простори, , — гранична точка множини . Елемент називається границею функції в точці , якщо
.
Також можна дати інше еквіваленте означення границі в точці для метричних просторів, аналогічне до означення за Гейне, розглянутого вище.
Елемент називається границею функції в точці , для довільної послідовності , при , що збігається до елемента , відповідна послідовність значень функції збіжна і має границею один і той самий елемент .
Найбільш важливими є наступні випадки:
, — дійсна функція, визначена на множині дійсних чисел;
, — дійсна функція n-змінних;
, — векторна функція n-змінних;
— метричний простір, , — дійсна функція, яка задана на множині метричного простору.
Нехай — топологічний простір, — гаусдорфів топологічний простір, , — гранична точка множини . Елемент називається границею функції в точці , якщо
.
Означення, аналогічне до Гейне вже буде частковим випадком, визначиного вище, а не рівносильним йому.
Вимога, щоб простір Y був гаусдорфовим, може бути послаблена до припущення, що Y є просто топологічним простором, але тоді границя функції може не бути єдиною. Тому вже не можна буде говорити про границю функції в точці, а скоріше про множину границь у точці.
Завало С. Т. (1972). Елементи аналізу. Алгебра многочленів. Київ: Радянська школа. с. 462. (укр.)
М.О.Дзедзінський. Математичний Аналіз для студентів. — Листочок.
Поняття границі функції // Вища математика в прикладах і задачах / Клепко В.Ю., Голець В.Л.. — 2-ге видання. — К. : Центр учбової літератури, 2009. — С. 207. — 594 с.
Sutherland, W. A. (1975), Introduction to Metric and Topological Spaces, Oxford: Oxford University Press, ISBN0-19-853161-3