Потік векторного поля
Вибрані статті із |
Числення |
---|
|
Спеціалізоване |
В математиці, термін потік векторного поля використовується для двох різних понять:
1. Потік векторного поля через гіперповерхню — поверхневий інтеграл другого роду на поверхні . За означенням
де — векторне поле (чи вектор-функція векторного аргументу — точки простору), — одиничний вектор додатної нормалі до поверхні (додатній напрям обирається для орієнтованої поверхні умовно, але однаково для всіх точок — тобто для диференційовної поверхні — так, щоб був неперервним; для неорієнтованої поверхні це не важливо, оскільки потік через неї завжди дорівнює нулю), — інфінітозимальний елемент поверхні. В фізиці іноді застосовують позначення
тоді потік записується у вигляді
Потік вектора напруженості Ф через майданчик ds - кількість силових ліній, що пронизують цей майданчик ds.
2. Потік векторного поля — однопараметрична родина дифеоморфізмів , що визначаються диференційним рівнянням
Нехай рух нестисливої рідини одиничної густини задано векторним полем швидкості . Тоді маса рідини, що протече за одиницю часу через поверхню буде дорівнювати потоку векторного поля через поверхню .
- Григорій Михайлович Фіхтенгольц. Курс диференціального та інтегрального числення. — 2024. — 2403 с.(укр.)
Це незавершена стаття з математики. Ви можете допомогти проєкту, виправивши або дописавши її. |