Розподіл імовірностей

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до навігації Перейти до пошуку
Дискретний розподіл ймовірностей для суми двох гральних кісток

У математиці та статистиці розпо́діл імові́рностей (який має математично описуватися функцією розподілу ймовірностей), ставить у відповідність кожному інтервалу ймовірність таким чином, що аксіоми ймовірностей виконуються. Математичною мовою, функція розподілу ймовірностей є ймовірнісною мірою, визначеною на борелівській алгебрі інтервалів.

Розподіл імовірностей є окремим випадком загальнішого означення ймовірнісної міри, яка є функцією, що ставить у відповідність вимірним множинам з вимірного простору ймовірності за аксіомами Колмогорова.

Згідно з означенням П. Лапласа, мірою ймовірності є дріб, чисельником якого є число сприятливих подій, а знаменником — число всіх можливих випадків.[1]

Також деякі вчені означають розподіл як ймовірнісну міру, індуковану випадковою величиною X на деякому інтервалі — ймовірність множини B є . Однак у цій статті розглядаємо лише ймовірнісні міри на множині інтервалів числової прямої.

Вступ

[ред. | ред. код]
Функція густини імовірності для нормального розподілу, найбільш важливого неперервного випадкового розподілу. Як позначено на малюнку, імовірності для інтервалів значень відповідають площі фігури під кривою функції.

Для найпростіших випадків, аби визначити розподіл ймовірностей, необхідно розрізняти дискретні і неперервні випадкові величини. В випадку із дискретною величиною, достатньо визначити функцію маси імовірності , яка задає значення імовірності кожному можливому результату: наприклад, при киданні шестигранної гральної кістки, кожне із шести можливих значень від 1 до 6 має однакову імовірність випасти, що дорівнює 1/6. Імовірність випадкової події тоді визначатиметься як сума ймовірностей тих результатів, які відповідають цій події; наприклад, імовірність події, що «при киданні гральної кістки випаде парне значення» дорівнюватиме

І навпаки, коли випадкова змінна приймає значення із неперервної області, тоді як правило окремий результат матиме нульову імовірність, і тільки події які містять нескінченно велику кількість значень, наприклад, інтервали, можуть мати додатне значення імовірності. Наприклад, імовірність того, що даних об'єкт має вагу, що точно дорівнює 500 г дорівнюватиме нулю, оскільки імовірність точно виміряти 500 г наближається до нуля, із тим як збільшуватиметься точність нашого інструменту вимірювання. Але тим не менш, контроль якості може вимагати, щоб імовірність «500 г» пакунку залишитися в межах ваги між 490 г та 510 г повинна становити не менше ніж 98 %, і ця вимога менш чутлива до точності інструментів вимірювання.

Неперервний розподіл імовірностей можна описати декількома шляхами. Функція густини імовірності описує нескінченно-малу ймовірність будь-якого даного значення, а імовірність того, що результат знаходитиметься в заданому інтервалі можна розрахувати за допомогою інтегрування функції густини імовірності по заданому інтервалу. З іншого боку, кумулятивна функція розподілу описує значення імовірності, що випадкова величина, не є більшою ніж дане значення; імовірність, що результат знаходиться у певному інтервалі можна розрахувати як різницю між значенням кумулятивної функції розподілу для кінцевих точок інтервалу. Кумулятивна функція розподілу є первісною для функції густини імовірності, за умови існування останньої.

Строге визначення

[ред. | ред. код]

Будь-яка випадкова величина задається своїм розподілом імовірностей. Якщо X є випадковою величиною, його розподіл ставить у відповідність відрізкам [a, b] ймовірність Pr[aXb], тобто ймовірність, що випадкова величина X прийме значення з інтервалу [a, b]. Розподіл ймовірностей величини X може бути однозначно описаний своєю функцією розподілу ймовірностей F(x), яка визначається, як

для усіх x з R.

Розподіл є дискретним, якщо його функція розподілу складається зі скінченної послідовності уступів, що фактично означає, що величина X є дискретною випадковою величиною: вона може набувати значення лише із визначеної скінченної (або зліченної) множини. Дехто визначає неперервний розподіл як такий, що його функція розподілу є неперервною функцією, що означає, що вона відповідає такій випадковій величині X для якої Pr[ X = x ] = 0 для усіх x в R. Інше визначення використовує термін неперервна функція розподілу лише для абсолютно неперервного розподілу. В термінах функції щільності, на множині дійсних чисел визначено невід'ємний інтеграл Лебега функції f, що задовольняє умові

для всіх a та b. Очевидно, для дискретних розподілів функція щільності не визначена; хоча треба відмітити, що для деяких неперервних розподілів, як драбина Кантора функція щільності також не визначена.

Дискретна функція розподілу виражається як —

для .

Де є ймовірністю елементарної події.

  • Розподіл імовірностей суми двох незалежних випадкових величин є згорткою їх функцій щільності.
  • Розподіл імовірностей різниці двох незалежних випадкових величин є крос-кореляцією їх функцій щільності.

Термінологія

[ред. | ред. код]

Теорія ймовірностей використовується у досить різноманітних застосуваннях, і термінологія відповідно не є однорідною і іноді плутана. Наведені терміни використовуються для некумулятивних функцій розподілу імовірностей:

  • Частотний розподіл: Частотний розподіл це таблиця, яка описує частоту виникнення різних результатів у вибірці.
  • Відносний частотний розподіл: Частотний розподіл для якого кожне значення було розділене (нормоване) на кількість результатів у вибірці, тобто на розмір вибірки.
  • Розподіл ймовірностей: Іноді використовують як синонім для відносного частотного розподілу, але в більшості книжок його використовують як границю до якої прямує відносний частотний розподіл, коли розмір вибірки прямує до розміру генеральної сукупності. Це загальний термін, який описує спосіб як загальна імовірність 1 розподілена по всім різним можливим результатам (тобто по всій генеральній сукупності). Він може, наприклад, означати таблицю, яка показує імовірності різних результатів для скінченної генеральної сукупності або густину імовірності для незліченно нескінченної генеральної сукупності.
  • Кумулятивна функція розподілу ймовірностей: є загальною функціональною формою для описання розподілу ймовірностей.
  • Функція розподілу ймовірностей: іноді може бути неоднозначним терміном, іноді може посилатися на функціональну форму таблиці розподілу імовірностей. Її ще можуть називати «нормованою функцією частотного розподілу», для якої площа під графіком дорівнює 1.
  • Маса імовірності, Масова функція ймовірностей, Дискретна функція розподілу імовірностей: для дискретних випадкових величин.
  • Категорійний розподіл: для дискретних випадкових величин із скінченною множиною значень.
  • Густина імовірності, Функція густини імовірності, Щільність неперервної випадкової величини: як правило використовуються для неперервних випадкових величин.

Наступні терміни можуть вносити неоднозначність, оскільки можуть посилатися на некумулятивні і кумулятивні розподіли, в залежності від уподобань автора:

  • Функція розподілу ймовірностей: неперервна або дискретна, некумулятивна або кумулятивна.
  • Функція ймовірностей: ще більш неоднозначний термін, може означати будь-який варіант із наведених вище речей.

Список важливих ймовірнісних розподілів

[ред. | ред. код]

Розподіли імовірностей як правило поділяють на два класи. Дискретний розподіл імовірностей (що застосовується у випадках коли множина можливих подій є дискретною, як наприклад підкидання монети чи гральної кістки) можна описати дискретним набором ймовірностей можливих подій, що називається функцією маси імовірності. З іншого боку, неперервний розподіл імовірностей (що застосовується у випадках коли можливі події можуть приймати значення із неперервного діапазону (наприклад, дійсних чисел), як наприклад, температура в конкретний час дня) зазвичай описують за допомогою функції густини імовірностей (де імовірність виникнення кожного окремого результату фактично дорівнює 0). Самим загальнопоширеним неперервним розподілом імовірностей є нормальний розподіл. Більш складні експерименти, такі що пов'язані із випадковими процесами визначеними у неперервному часі[en], можуть потребувати використання більш загальних мір ймовірності.

Розподіл імовірностей, простором вибірки якого є множина дійсних чисел, називається одноваріативним[en], а розподіл простором вибірки якого є векторний простір називається спільним розподілом. Одноваріативний розподіл визначає імовірності однієї окремої випадкової величини яка приймає різні значення; багатоваріативний розподіл (спільний розподіл) визначає ймовірності вектора випадкової величини — списку двох або більшої кількості випадкових величин — враховуючи різні комбінації значень. До важливих і добревідомих одноваріативних розподілів імовірностей відносяться біноміальний розподіл, гіпергеометричний розподіл, і нормальний розподіл. Багатовимірний нормальний розподіл це найвідоміший спільний розподіл.

Деякі ймовірнісні розподіли є дуже важливим в теорії та практиці, тож їм дали свої назви:

Дискретні розподіли

[ред. | ред. код]

Зі скінченною множиною подій

[ред. | ред. код]

З нескінченою множиною подій

[ред. | ред. код]
Пуассонівський розподіл
Розподіл Skellam

Неперервні розподіли

[ред. | ред. код]

Визначені на замкненому інтервалі

[ред. | ред. код]
Бета-розподіл
Рівномірний розподіл (неперервний)

Визначений на півінтервалі [0,∞)

[ред. | ред. код]
Розподіл хі-квадрат
Експоненціальний розподіл
Гамма-розподіл
Розподіл Парето

Визначені на всій дійсній осі

[ред. | ред. код]
Розподіл Коші
Розподіл Лапласа
Розподіл Леві
Нормальний розподіл

Згортка розподілів

[ред. | ред. код]

Для будь-якої множини незалежних випадкових величин функція щільності їх загального розподілу є добутком їх функцій щільності.

Ймовірносний простір розмірності більше 1

[ред. | ред. код]

Матричні розподіли

[ред. | ред. код]

Приклади розподілів

[ред. | ред. код]

Клас розподілів типу зсув масштабу

[ред. | ред. код]

Клас розподілів називається класом розподілу типу зсув-масштабу, якщо

Сама функція називається базовою для цього класу розподілів.

Або, якщо говорити звичайною мовою, це набір розподілів, графіки яких однакові, просто зсунуті чи масштабовані вздовж осі .

Наприклад, всі Нормальні розподіли утворюють клас розподілів типу зсув-масштабу.

Див. також

[ред. | ред. код]

Джерела

[ред. | ред. код]

Примітки

[ред. | ред. код]
  1. Лаплас. Опыт философии теории вероятностей / В книге: Вероятность и математическая статистика: Энциклопедия / Гл. ред. Ю. В. Прохоров. — Большая Российская энциклопедия. — 1999. — С. 834 — 869.